【题目】阅读材料:
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:.
例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.
解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为=.
根据以上材料,解决下列问题:
问题1:点P1(3,4)到直线的距离为 ;
问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线相切,求实数b的值;
问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.
【答案】(1)4;(2)b=或;(3)S△ABP的最大值=4,S△ABP的最小值=2.
【解析】
试题(1)根据点到直线的距离公式就是即可;
(2)根据点到直线的距离公式,列出方程即可解决问题.
(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.
试题解析:解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为:4.
(2)∵⊙C与直线相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴ =1,解得b=或.
(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP的最大值=×2×4=4,S△ABP的最小值=×2×2=2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-4n+4经过点P(2,4),与x轴交于A、B两点,过点P作直线l∥x轴,点C为第二象限内直线l上方,抛物线上一个动点,其横坐标为m。
(1)如图(1),若AB=6, 求抛物线解析式
(2)如图(2),在(1)的条件下,设点C的横坐标为t,ACP的面积S,求S与t之间的函数关系式.
(3)如图(3),连接OP,过点C作EC∥OP交抛物线于点E,直线PE、CP分别交x轴于点G、H,当PG=PH时,求a的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有__________人;
(2)请你将条形统计图(1)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、.“园艺小清新之旅”和.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
(1)李欣选择线路.“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一面靠墙(墙的最大可用长度为8 m)的空地上用长为24 m的篱笆围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.
(1)求S关于x的函数关系式及自变量的取值范围;
(2)求所围成花圃的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个二次函数图像上部分点的横坐标,纵坐标的对应值如下表:
… | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 0 | 2 | 0 | -6 | … |
(1)的值为______;
(2)在给定的直角坐标系中,画出这个函数的图像;
(3)当时,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,建立如图所示的平面直角坐标系xOy,ΔABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出ΔABC关于y轴对称的ΔA1B1C1,并写出点A1,B1,C1的坐标;
(2)将ΔABC绕点C逆时针旋转90°,画出旋转后的ΔA2B2C,并写出点A2,B2的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com