【题目】一个二次函数图像上部分点的横坐标,纵坐标的对应值如下表:
… | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 0 | 2 | 0 | -6 | … |
(1)的值为______;
(2)在给定的直角坐标系中,画出这个函数的图像;
(3)当时,求的取值范围.
科目:初中数学 来源: 题型:
【题目】某中学开展“头脑风暴”知识竞赛活动,八年级班和班各选出名选手参加初赛,两个班的选手的初赛成绩(单位:分)分别是:
1班85 80 75 85 100
2班80 100 85 80 80
(1)根据所给信息将下面的表格补充完整;
平均数 | 中位数 | 众数 | 方差 | |
班初赛成绩 | ||||
班初赛成绩 |
(2)根据问题(1)中的数据,判断哪个班的初赛成绩较为稳定,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:.
例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.
解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为=.
根据以上材料,解决下列问题:
问题1:点P1(3,4)到直线的距离为 ;
问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线相切,求实数b的值;
问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某淘宝网店销售台灯,成本为每个30元.销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.
(1)若售价下降1元,每月能售出 个台灯,若售价下降x元(),每月能售出 个台灯.
(2)为迎接“双十一”,该网店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.
(3)月获利能否达到9600元,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点,如果点的纵坐标满纵坐标满足: ,那么称点为点的“关联点”.
(1)请直接写出点的“关联点”的坐标____________;
(2)若点在函数的图像上,其“关联点”与点重合,求点的坐标;
(3)若点的“关联点”在函数的图像上,当时,求线段的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员单行了一次选拔赛,要求这两名队员各射击10次,比赛结束后,根据比赛成绩情况,将甲,乙两名队员的比赛成绩制成了如下的统计图(表):
甲队员的成绩统计表:
成绩(单位:环) | 7 | 8 | 9 | 10 |
次数(单位:次) | 5 | 1 | 3 | 1 |
(1)在乙队员成绩扇形统计图中,求“8环”所在扇形的圆心角的度数;
(2)经过整理,得到的分析数据如表:
队员 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | 8 | b | 1 |
求表中的a、b、c的值(3)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形的边长为,点从点出发,以的速度沿着折线运动,到达点时停止运动;点从点出发,也以的速度沿着折线运动,到达点时停止运动.点、分别从点、同时出发,设运动时间为.
(1)当为何值时,、两点间的距离为.
(2)连接、交与点,
①在整个运动过程中,的最小值为______;
②当时,此时的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,反比例函数的图象经过点,.
(1)求代数式mn的值;
(2)若二次函数的图象经过点B,求代数式的值;
(3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线的下方,结合函数图象,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com