精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形OABC的顶点OBy轴上,顶点A在反比例函数y=﹣上,顶点C在反比例函数y上,则平行四边形OABC的面积是(  )

A.8B.10C.12D.

【答案】C

【解析】

先过点AAEy轴于点E,过点CCDy轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=,△AOE的面积=△CBD的面积相等=,最后计算平行四边形OABC的面积.

过点AAEy轴于点E,过点CCDy轴于点D

根据AEBCD090°ABECODABCO可得:ABE≌△COD(AAS)

∴△ABECOD的面积相等,

顶点C在反比例函数y上,

∴△ABE的面积=COD的面积相等=

同理可得:AOE的面积=CBD的面积相等=

平行四边形OABC的面积=2×(+)12

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,

1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:

2)在图②中作,使它满足以下条件:

①圆心在边上;②经过点;③与边相切.

(尺规作图,只保留作图痕迹,不要求写出作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BCAD于点EF,若BE=3AF=5,则AC的长为(

A. B. C. 10D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx22ax+m

1)当a2m=﹣5时,求抛物线的最值;

2)当a2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;

3)当m0时,平行于y轴的直线l分别与直线yx﹣(a1)和该抛物线交于PQ两点.若平移直线l,可以使点PQ都在x轴的下方,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿ABC路线对索道进行检修维护.如图:已知米,米,AB与水平线的夹角是BC与水平线的夹角是.求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (x>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:

销售单价(元)

200

230

250

年销售量(万件)

14

11

9

1)请求出之间的函数关系式,并直接写出自变量的取值范围;

2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线y=x-2x轴、y轴分别交于点BC,半径为1的⊙P的圆心P从点A4m )出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.

1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;

2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?

3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?

查看答案和解析>>

同步练习册答案