精英家教网 > 初中数学 > 题目详情

【题目】某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正,某天从A地出发到收工时行走记录为(单位:千米):

+15—2+5—1—3—2+4—5

1)计算收工时,检修小组在A地的哪一边,距A地多远?

2)若每千米汽车耗油量为0.4升,求出发到收工检修小组耗油多少升?

【答案】1)在A地的东边,距A11千米;(214.8

【解析】

1)直接把记录的数据相加即可得到结果;

2)先求出所有记录数据的绝对值的和,再乘以每千米耗油量0.4升,即可得到结果.

1+15+-2++5+-1+-3+-2++4+-5=11(千米)

答:检修小组在A地的东边,距A11千米;

2=37(千米)

37×0.4=14.8(升)

答:检修小组耗油14.8升。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在矩形中,将点翻折到对角线上的点处,折痕于点.将点翻折到对角线上的点处,折痕于点

求证:四边形为平行四边形;

若四边形为菱形,且,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):

①接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?

②若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?

③若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=5,BC=

(2)在△ABC中, AB、BC、AC三边的长分别为,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图2所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法

①△ABC的面积为:

②若△DEF三边的长分别为,请在图3的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=mx2-6x+1(m是常数).

(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;

(2)若该函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=   °;

(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;

(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?

小敏在思考问题,有如下思路:连接AC.

结合小敏的思路作答

(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由参考小敏思考问题方法解决一下问题

(2)如图2,在(1)的条件下,若连接AC,BD.

①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;

②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,是等边三角形,分别在上,且,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC与∠BAD的度数比为12,周长是48cm,求:

1)两条对角线的长度;

2)菱形的面积.

查看答案和解析>>

同步练习册答案