精英家教网 > 初中数学 > 题目详情
9.在下列网格中,小正方形的边长为1,点A,B,O都在格点上,求∠A的余弦值(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{10}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{1}{2}$

分析 首先把∠A放在一个直角三角形内,再求出斜边长,然后根据余弦定义可得∠A的余弦值.

解答 解:AO=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
cos∠A=$\frac{AC}{AO}$=$\frac{4}{2\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
故选:C.

点评 此题主要考查了勾股定理和锐角三角函数,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.若m+n=3,mn=6,则mn2+m2n的值为18.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.计算|-6|-(-$\frac{1}{3}$)0的值是(  )
A.5B.-5C.5$\frac{2}{3}$D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知抛物线y=-x2+2x经过原点O,且与直线y=x-2交于B,C两点.
(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如果关于x的一元二次方程kx2-3x-1=0无实数根,那么k的取值范围是k<-$\frac{9}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.
(1)求抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.
(1)利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);
(2)若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,下列结论:①AE=AF;②∠EAF=60°;③△CEF是等腰三角形;④AF=$\sqrt{3}$cm,其中结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案