分析 (1)根据两个图形必须是相似形得到∠ADE=∠B,根据平行线的性质证明即可;
(2)延长AM交BC于D,根据等腰三角形三线合一得到∠DAC=30°,求出∠AFM=90°,得到答案.
解答 (1)证明:∵△ADE是△ABC的位似图形,
∴△ADE∽△ABC,
∴∠ADE=∠B,![]()
∴DE∥BC;
(2)AC⊥MN.
证明:如图2,延长AM交BC于D,
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∴∠DAC=30°,又∠AMN=60°,
∴∠AFM=90°,即AC⊥MN.
点评 本题考查的是位似变换的性质、旋转变换以及等边三角形的性质,掌握两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com