分析 (1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;
(2)根据全等三角形的性质得到∠ADC=∠BOC根据勾股定理的逆定理得到∠ADO=90°,于是得到∠ADC=150°,即可得到结论;
(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α-60°,得到方程190°-α=α-60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°-α,∠ADO=α-60°,于是得到α-60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°-α=50°于是得到α=140°.
解答 (1)证明:∵△BOC≌△ADC,
∴CO=CD,∠BCO=∠ACD,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠OCD=∠ACB=60°;
∴△COD是等边三角形,
(2)解:∵△BOC≌△ADC,
∴∠ADC=∠BOC
∵AO=n2+1,AD=n2-1,OD=2n,
∴AO2=(n2+1)2=(n2-1)2+(2n)2=AD2+OD2,
∴∠ADO=90°,
又∵△COD是等边三角形,
∴∠ODC=60°,
∴∠ADC=150°,
∴α=150°;
(3)解:①要使AO=AD,需∠AOD=∠ADO.
∵∠AOD=360°-∠AOB-∠COD-α=360°-100°-60°-α=200°-α,∠ADO=α-60°,
∴200°-α=α-60°
∴α=130°;
②要使OA=OD,需∠OAD=∠ADO.
∵∠AOD=200°-α,∠ADO=α-60°,
∴∠OAD=180°-(∠AOD+∠ADO)=40°,
∴α-60°=40°
∴α=100°;
③要使OD=AD,需∠OAD=∠AOD.
∵200°-α=40°
∴α=160°.
综上所述:当α的度数为130°,或100°,或160°时,△AOD是等腰三角形.
点评 本题考查了全等三角形的性质,等边三角形的性质,勾股定理的逆定理,等腰三角形的判定,熟练掌握全等三角形的性质定理是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com