【题目】在矩形ABCD中,AB=9cm,E是直线CD上一点,连接AC,BE,若AC与BE交于点F且DE=3cm,则EF:BE的值是_____.
科目:初中数学 来源: 题型:
【题目】如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形的对角线、交于点,.试证明:;
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC内接于⊙P,AB是⊙P的直径,A(﹣1,0)、C(3,2),BC的延长线交y轴于点D,点F是y轴上的一动点,连接FC并延长交x轴于点E.
(1)求⊙P的半径;
(2)当∠A=∠DCF时,求证:CE是⊙P的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为,其圆心P在x轴上运动.
(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;
(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;
(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出AG+OG的最小值 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地教育部门为学生提供了四种在线学习方式:阅读、听课、答疑、讨论,并对部分学生作了“最感兴趣的在线学习方式”网络调查(只选择一类),把调查结果绘制成如下两幅尚不完整的统计图:
根据图中信息,回答下列问题:
(1)本次调查的人数有 人;在扇形统计图中,“在线答疑”所在扇形的圆心角度数是 ;
(2)补全条形统计图;
(3)在随机调查的学生中,甲、乙两位同学选择同类“最感兴趣的在线学习方式”的概率是否等于?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.
(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;
(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P,Q同时从点C出发,均以1cm/s的速度运动,其中点P沿CA向终点A运动;点Q沿CB向终点B运动.过点P作PE∥BC,分别交AD,AB于点E,F,设动点Q运动的时间为t秒.
(1)求DQ的长(用含t的代数式表示);
(2)以点Q,D,F,E为顶点围成的图形面积为S,求S与t之间的函数关系式;
(3)连接PQ,若点M为PQ中点,在整个运动过程中,直接写出点M运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,则AF=.其中正确的结论是______.(填写所有正确结论的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com