【题目】如图,在四边形ABCD中,∠ABC=90°,对角线AC、BD交于点O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.
科目:初中数学 来源: 题型:
【题目】已知,将矩形ABCD折叠,使点C与点A重合,点D落在点G处,折痕为EF.
(1)如图1,求证:BE=GF;
(2)如图2,连接CF、DG,若CE=2BE,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形都为等腰三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下说法正确的有( )
①正八边形的每个内角都是135°;
②反比例函数y=﹣,当x<0时,y随x的增大而增大;
③长度等于半径的弦所对的圆周角为30°;
④分式方程的解为;
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=10,以AB为直径作半圆O,半径OA绕点O顺时针旋转得到OC,点A的对应点为C,当点C与点B重合时停止.连接BC并延长到点D,使得CD=BC,过点D作DE⊥AB于点E,连接AD,AC.
(1)AD= ;
(2)如图1,当点E与点O重合时,判断△ABD的形状,并说明理由;
(3)如图2,当OE=1时,求BC的长;
(4)如图3,若点P是线段AD上一点,连接PC,当PC与半圆O相切时,直接写出直线PC与AD的位置关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.
(1)求∠D的度数;
(2)若点E为CD的中点,求EF的值;
(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如果α,β都为锐角,且tanα=,tanβ=,求α+β的度数.
解决:如图①,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,连结AC,易证△ABC是等腰直角三角形,因此可求得α+β=∠ABC= .
拓展:参考以上方法,解决下列问题:如果α,β都为锐角,当tanα=4,tanβ=时,
(1)在图②的正方形网格中,利用已作出的锐角α,画出∠MON=α﹣β;
(2)求出α﹣β= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司开发一种新的节能产品,工作人员对销售情况进行了调查,图中折线表示月销售量(件)与销售时间(天)之间的函数关系,已知线段表示函数关系中,时间每增加天,月销售量减少件,求与间的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2﹣4x+3图象与x轴分别交于点B、D,与y轴交于点C,顶点为A,分别连接AB,BC,CD,DA.
(1)求四边形ABCD的面积;
(2)当y>0时,自变量x的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com