【题目】问题背景:如图,四边形中,,,,,,为边上一动点,连接、.
问题探究
(1)如图1,若,则的长为__________.
(2)如图2,请求出周长的最小值;
(3)如图3,过点作于点,过点分别作于,于点,连接
①是否存在点,使得的面积最大?若存在,求出面积的最大值,若不存在,请说明理由;
②请直接写出面积的最小值.
【答案】(1);(2)18;(3)①;②
【解析】
(1)过点B作BF⊥AD,交DA的延长线于点F,利用等腰直角三角形ABF求得AF和BF的长,再利用Rt△PBF求得PF的长,进而得解;
(2)作点B关于直线AD的对称点B',连接B'C,交AD于点P',连接BP',根据两点之间线段最短可知当B',P,C三点共线时,周长取得最小值,再利用勾股定理计算即可;
(3)①②根据,可得点E、M、P、N在以PE为直径的圆上,利用圆周角定理和直角三角形两锐角互余可证得△MPN∽△CPB,进而可知当MN最大时,面积的最大,当MN最小时,面积的最小,由圆的性质可知当MN为直径时MN最大,当MN⊥PE时,MN最小,最后利用勾股定理、等积法和相似三角形的性质求解即可.
解:(1)如图,过点B作BF⊥AD,交DA的延长线于点F,
∵AD∥BC,∠ABC=45°,
∴∠FAB=∠ABC=45°,
∵BF⊥AD,
∴在Rt△ABF中,AF2+BF2=AB2,
∵
∴AF=BF=AB=,
∵AD∥BC,∠PBC=30°,
∴∠FPB=∠PBC=30°,
∵在Rt△PBF中,tan∠FPB=
∴tan30°=,
∴
∴;
(2)如图,作点B关于直线AD的对称点B',连接B'C,交AD于点P',连接BP',
∵点B与点B'关于直线AD对称,
∴AD垂直平分BB',BF=B'F=3,
∴P'B=P'B',BB'=6,
∴当点P在点P'时,PB+PC取得最小值,最小值为B'C的长,此时△BPC的周长最小,
在Rt△BB'C中,B'C=,
∴△BPC的周长最小值为B'C+BC=10+8=18;
(3)①∵,,
∴∠EMP=∠ENP=90°,
∴点E、M、P、N在以PE为直径的圆上,如图所示,
则∠PMN=∠PEN,
∵,,
∴∠PEC=∠ENC=90°,
∴∠PEN+∠NEC =∠NEC+∠PCB=90°,
∴∠PEN =∠PCB,
∴∠PMN=∠PCB,
又∵∠MPN=∠CPB,
∴△MPN∽△CPB,
∴
∵,
∴PE=3,
∴
∴
∴当MN取得最大值时,的面积取得最大值,
当MN=PE=3时,解得
即当MN=PE=3时,的面积最大,最大值为;
②由①可知,,
∴当MN取得最小值时,的面积取得最小值,
由垂径定理可知,当MN⊥PE时,MN取得最小值,
如图,当MN⊥PE时,则弧ME=弧NE
∴∠MPE=∠NPE,
∵,
∴∠PEB=∠PEC=90°,
∴△PEB≌△PEC,
∴EB=EC=BC=4,
在Rt△BEP中,BP=,
∵
∴
∴,
在Rt△PME中,PM=
∵
∴
∴,
∴,
∴,
解得,
∴面积的最小值为.
科目:初中数学 来源: 题型:
【题目】为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.
汉字听写大赛成绩分数段统计表
分数段 | 频数 |
2 | |
6 | |
9 | |
18 | |
15 |
汉字听写大赛成绩分数段条形统计图
(1)补全条形统计图.
(2)这次抽取的学生成绩的中位数在________的分数段中;这次抽取的学生成绩在的分数段的人数占抽取人数的百分比是_______.
(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两地相距300,一辆货车和一辆轿车先后从甲地出发到乙地停止,货车先出发从甲地匀速开往乙地,货车开出一段时间后,轿车出发,匀速行驶一段时间后接到通知提速后匀速赶往乙地(提速时间不计),最后发现轿车比货车提前0.5小时到达,下图表示两车之间的距离与货车行驶的时间之间的关系,则货车行驶__________小时.两车在途中相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,AD=8.动点E,F同时分别从点A,B出发,分别沿着射线AD和射线BD的方向均以每秒1个单位的速度运动,连接EF,以EF为直径作⊙O交射线BD于点M,设运动的时间为t.
(1)当点E在线段AD上时,用关于t的代数式表示DE,DM.
(2)在整个运动过程中,
①连结CM,当t为何值时,△CDM为等腰三角形.
②圆心O处在矩形ABCD内(包括边界)时,求t的取值范围,并直接写出在此范围内圆心运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明准备利用所学的知识测量旗杆的高度.他设计了如下的测量方案:选取一个合适观测点,在地面处垂直地面竖立高度为2米的标杆,小明调整自己的位置到处,使得视线与、在同一直线上,此时测得米,然后小明沿着方向前进11米到处,利用随身携带的等腰直角三角形测得点的仰角为45°,已知小明眼睛到地面距离为1.5米(米),请你根据题中所给的数据计算旗杆的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)将△ABC向下平移5个单位再向右平移1个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出△A1B1C1关于y轴对称的△A2B2C2;
(3)P(a,b)是△ABC的边AC上一点,请直接写出经过两次变换后在△A2B2C2中对应的点P2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片中,,,折叠纸片使点落在边上的处,折痕为,过点作交于,连接.
图1 图2
(1)求证:四边形为菱形;
(2)当点在边上移动时,折痕的端点,也随之移动;
①当点与点重合时(如图2),求菱形的边长;
②若限定,分别在边,上移动,则点在边上移动的最大距离是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与x轴分别交于,两点,与y轴交于点C.
(1)求抛物线的表达式及顶点D的坐标;
(2)点F是线段AD上一个动点.
①如图1,设,当k为何值时,.
②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解,并解决问题:
“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.
例:当代数式的值为7时,求代数式的值.
解:因为,所以.
所以.
以上方法是典型的整体代入法.
请根据阅读材料,解决下列问题:
(1)已知,求的值.
(2)我们知道方程的解是,现给出另一个方程,则它的解是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com