精英家教网 > 初中数学 > 题目详情

【题目】ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交线段AD、BC于点E、F.
(1)根据题意,画出图形,并标上正确的字母;
(2)求证:DE=BF.

【答案】
(1)解:如图所示:


(2)证明:∵四边形ABCD是平行四边形,

∴AD∥BC,OB=OD,

∴∠EDO=∠OBF,

在△DOE和△BOF中,

∴DOE≌△BOF(ASA),

∴DE=BF


【解析】(1)根据题意直接画图即可;(2)由四边形ABCD是平行四边形,可得AD∥BC,OB=OD,继而可利用ASA,判定△DOE≌△BOF,继而证得DE=BF.
【考点精析】关于本题考查的平行四边形的性质,需要了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,AB=AC,BAC=90,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下五个结论:(1)AE=CF;(2)APE =CPF;(3)EPF是等腰直角三角形;(4)= (5)EF=AP其中一定成立的有________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,按下列要求作图(第(1)、(2)小题用尺规作图,第(3)小题不限作图工具,保留作图痕迹).

(1)作∠B的角平分线;

(2)作BC的中垂线;

(3)以BC边所在直线为对称轴,作ABC的轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,E,F分别在边AC、BC上,满足AE=CF,连接BE,AF交于点P.

(1)求证:ABE≌△CAF

(2)求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.

(1)如图①,若△AMN是等边三角形,则∠BAC=   °;

(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2

(3)如图③ABC的平分线BPAC边的垂直平分线相交于点P,过点PPH垂直BA的延长线于点H.若AB=4,CB=10,求AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.

(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;
(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交线段AD、BC于点E、F.
(1)根据题意,画出图形,并标上正确的字母;
(2)求证:DE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD.若AD=4,BC=6,则梯形ABCD的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD和CD分别平分ABC的内角EBA和外角ECA,BD交AC于F,连接AD.

(1)求证:BDC=BAC

(2)若AB=AC,请判断ABD的形状,并证明你的结论;

(3)在(2)的条件下,若AF=BF,求EBA的大小.

查看答案和解析>>

同步练习册答案