精英家教网 > 初中数学 > 题目详情
7.已知$\frac{m}{n}$=$\frac{3}{5}$,则$\frac{m}{n-m}$=$\frac{3}{2}$.

分析 根据比例的性质,可用m表示n,根据分式的性质,可得答案.

解答 解:由$\frac{m}{n}$=$\frac{3}{5}$,得
n=$\frac{5m}{3}$,
$\frac{m}{n-m}$=$\frac{m}{\frac{5m}{3}-m}$=$\frac{3}{2}$,
故答案为:$\frac{3}{2}$.

点评 本题考查了比例的性质,利用比例的性质得出n=$\frac{5m}{3}$是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,AB为⊙O的直径,PB为切线,点C在⊙O上,AC∥OP.
(1)求证:PC为⊙O的切线;
(2)过D点作DE⊥AB于点E,交CB于点F,连AD交BC于点G,CG=3,DE=4,求$\frac{DG}{DB}$的值;
(3)在(2)的条件下,求tan∠DAC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=-1或9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个棱柱的棱数恰是其面数的2倍,则这个棱柱的顶点个数是8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知AC=FE,AD=BF,点A、D、B、F在一条直线上,要使△ABC≌△FDE,需添加一个条件,下列条件不合适的是(  )
A.∠C=∠FB.BC=DEC.∠A=∠FD.AC∥EF

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=-2x2的图象,则图中阴影部分的面积为2π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.下列代数式中,符合代数式书写要求的有(2)(5).
(1)ab÷c2;(2)$\frac{3m}{n}$;(3)3$\frac{1}{5}{x}^{2}y$;(4)3×(m+n);(5)$\frac{{a}^{2}-{b}^{3}}{5}$;(6)ab•3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)$\sqrt{8}$+(-1)2015-|-$\sqrt{2}$|;
(2)2sin30°-$\sqrt{2}$sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.若用三根长度分别为8,8,6的木条做成一个等腰三角形,则这个等腰三角形的各个角的大小分别为多少?(精确到1′)

查看答案和解析>>

同步练习册答案