分析 (1)连接CO,如图1,易证∠COD=∠DOB,从而可证到△COP≌△BOP,则有∠OCP=∠OBP.根据切线的性质可得∠OBP=90°,即可得到∠OCP=90°,从而可得PC为⊙O的切线;
(2)连接OC,BD,设OD与BC交于点H,如图2,根据等腰三角形的性质可得OH⊥BC,CH=BH,运用面积法可得BH=DE=4,就可求出CH,GH,BG.易证△GHD∽△GDB,运用相似三角形的性质可求出DG,然后运用勾股定理可求出DB,就可求出$\frac{DG}{DB}$;
(3)根据圆周角定理可得∠DAC=∠DBC,在Rt△GDB中运用三角函数的定义就可解决问题.
解答 解:(1)连接CO,如图1,![]()
∵AC∥OP,
∴∠OAC=∠DOB,∠OCA=∠COD,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠COD=∠DOB.
在△COP和△BOP中,
$\left\{\begin{array}{l}{OC=OB}\\{∠COP=∠BOP}\\{OP=OP}\end{array}\right.$,
∴△COP≌△BOP,
∴∠OCP=∠OBP.
∵AB为⊙O的直径,PB为切线,
∴∠OBP=90°,
∴∠OCP=90°,
∴PC为⊙O的切线;
(2)连接OC,BD,设OD与BC交于点H,如图2,![]()
∵OC=OB,∠COD=∠BOD,
∴OH⊥BC,CH=BH,
∴S△OBD=$\frac{1}{2}$OD•BH=$\frac{1}{2}$OB•DE.
∵OB=OD,
∴BH=DE=4,
∴CH=BH=4.
∵CG=3,
∴GH=1,BG=5.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DHG=∠GDB=90°.
又∵∠DGH=∠BGD,
∴△GHD∽△GDB,
∴$\frac{DG}{BG}$=$\frac{GH}{GD}$,
∴DG2=GH•BG=1×5=5,
∴DG=$\sqrt{5}$.
∴DB=$\sqrt{B{G}^{2}-D{G}^{2}}$=$\sqrt{25-5}$=2$\sqrt{5}$,
∴$\frac{DG}{DB}$=$\frac{\sqrt{5}}{2\sqrt{5}}$=$\frac{1}{2}$;
(3)∵∠DAC=∠DBC,
∴tan∠DAC=tan∠DBC=$\frac{DG}{DB}$=$\frac{1}{2}$.
点评 本题主要考查了全等三角形的判定与性质、相似三角形的判定与性质、切线的判定与性质、圆周角定理、三角函数的定义、平行线的性质、等腰三角形的性质、勾股定理等知识,有一定的综合性,利用面积法求出BH的长是解决第(2)小题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com