【题目】在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
【答案】或
【解析】
根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.
解:如图:过点E作EM⊥BC,垂直为M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2,
又∵点G、H分别是OB、OD的中点,
∴GH=BD=,
当四边形EGFH为矩形时,GH=EF=,
在Rt△EMF中,FM==,
易证△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
设BF=x,则FC=6-x,由题意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案为:或.
科目:初中数学 来源: 题型:
【题目】在Rt△ABC与Rt△ABD中,,,AC、BD相交于点G,过点A作交CB的延长线于点E,过点B作交DA的延长线于点F,AE、BF相交于点H.
(1)证明:ΔABD≌△BAC.
(2)证明:四边形AHBG是菱形.
(3)若AB=BC,证明四边形AHBG是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十一”黄金周期间,朱老师织织朋友去某影视城旅游.现有两家旅行社.报价都为元.且提供服务完全相同.但针对组团游的游客,甲旅行社表示,每人都按八折收费; 乙旅行社表示,若人数不超过人,每人都按八折收费.若超过人,則超出部分按七五折收费,假设组团参加甲乙两家旅行社旅游的人数均为人.
(1)请分别写出甲,乙两家旅行社收取组团游的总费用(元)与(人)之间的函数关系式.
(2)如果朱老师和朋友一共有人去旅游.那你计算下,在甲、乙两家旅行社中,朱老师应选择哪家?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的两直角边所在直线分别与直线BC,CD交于点M,N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是__________________;
(2)如图2,若点O在正方形的中心(即两对角线的交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说理)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B离墙的距离大5米.
(1)这个云梯的底端B离墙多远?
(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,欢欢和乐乐分别站在正方形的顶点和顶点处,欢欢以的速度走向终点,途中位置记为点;乐乐以的速度走向终点,途中位置记为.假设两人同时出发,两人都到达终点时结束运动.已知正方形边长为,点在上,.记三角形的面积为,三角形的面积为.设出发时间为:
(1)如图情况,用含的代数式表示下列线段的长度:
______;______; ______;______;
(2)如图情况,他们出发多少秒后?
(3)是否存在这样的时刻,使得?若存在,请求出的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在坐标平面内△ABC的顶点坐标分别为A(0,2),B(3,3),C(2,1),(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC关于原点对称的△A1B1C1,并直接写出点C1点的坐标;
(2)画出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有七个数将它们填人图(个圆两两相交分成个部分)中,使得每个圆内部的个数之积相等,设这个积为,如图给出了一种填法,此时__________,在所有的填法中,的最大值为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com