精英家教网 > 初中数学 > 题目详情
8.如图所示的一块土地,∠ADC=90°,AD=3m,CD=4m,AB=12m,BC=13m,求这块土地的面积.

分析 连接AC,利用勾股定理可以得出△ACD和△ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求土地的面积.

解答 解:连结AC,
∵∠ADC=90°,AD=3m,CD=4m,
∴由勾股定理可知AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=5cm,
又∵AC2+BC2=52+122=132=AB2
∴△ABC是直角三角形,
故所求面积=S△ABC-S△ACD=$\frac{1}{2}$×5×12-$\frac{1}{2}$×3×4=30-6=24(m)2

点评 此题主要考查了直角三角形面积公式以及勾股定理以及逆定理的应用.关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A重合)经过A、E、O三点的圆交直线AB于点F,求出当△OEF的面积取得最小值时,点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)求此抛物线顶点坐标及对称轴;
(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图1,正方形ABCD中,点P从点A出发,以每秒2厘米的速度,沿A→D→C方向运动,点Q从点B出发,以每秒1厘米的速度,沿BA向点A运动,P、Q同时出发,当点P运动到点C时,两动点停止运动,若△PAQ的面积y(cm2)与运动时间x(s)之间的函数图象为图2,若线段PQ将正方形分成面积相等的两部分,则x的值为6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.(1)36的算术平方根是6,-27的立方根是-3,2的平方根是±$\sqrt{2}$
(2)$\sqrt{16}$=4,±$\sqrt{25}$=±5,-$\sqrt{\frac{4}{9}}$=-$\frac{2}{3}$,$|{\sqrt{3}-2}|$=2-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.市一中准备组织学生及学生家长到武汉大学参观体验,为了便于管理,所有人员到武汉必须乘坐在同一列动车上;根据报名人数,若都买一等座单程火车票需2556元,若都买二等座单程火车票且花钱最少,则需1530元;已知学生家长与教师的人数之比为2:1,安陆到武汉的动车票价格(动车学生票只有二等座可以打6折)如下表所示:
运行区间 票价
 上车站 下车站 一等座 二等座
 安陆 武汉 36(元)30(元)
(1)参加参观体验的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(x小于参加参观体验的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.
(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票的总费用至少是多少钱?最多是多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平行四边形ABCD中,M、N分别是BC、DC的中点,AM=4,AN=3,且∠MAN=60°,则AB的长是$\frac{14}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知$\frac{1}{x}$-$\frac{1}{y}$=$\frac{1}{x+y}$,则$\frac{y}{x}$-$\frac{x}{y}$-2=-3.

查看答案和解析>>

同步练习册答案