【题目】理解计算:如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.求∠MON的度数;
拓展探究:如图②,∠AOB=α,∠AOC=β.(α,β为锐角),射线OM平分∠BOC,ON平分∠AOC.求∠MON的度数;
迁移应用:其实线段的计算与角的计算存在着紧密的联系,如图③线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,则MN的长为_____(直接写出结果).
【答案】理解计算: ;拓展探究: ;迁移应用: .
【解析】试题分析:理解计算:根据角的平行线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;
拓展探究:根据角的平行线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;
迁移应用:根据上面两题的原理,通过推导(或直接)得出结论.
试题解析:理解计算:∵∠BOC=∠AOB+∠AOC=90°+30°=120°,
射线OM平分∠BOC,
∴∠COM=∠BOC=×120°=60°,
∵ON平分∠AOC,
∴∠CON=∠AOC=×30°=15°,
∴∠MON=∠COM﹣∠CON=60°﹣15°=45°;
拓展探究:∵∠BOC=∠AOB+∠AOC=α+β,
∵射线OM平分∠BOC,
∴∠COM=∠BOC=(α+β),
∵ON平分∠AOC,
∴∠CON=∠AOC=β,
∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α;
迁移应用:∵AB=m,BC=n,
∴AC=AB+BC=m+n,
∵点M,N分别为AC,BC的中点,
∴CM=AC=(m+n),CN=BC=n,
∴MN=CM﹣CN=m,
故答案为: m.
科目:初中数学 来源: 题型:
【题目】“抢红包”是2015年春节十分火爆的一项网络活动,某企业有4000名职工,从中随机抽取350人,按年龄分布和“抢红包”所持态度情况进行调查,并将调查结果绘成了条形统计图和扇形统计图.
(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?
(2)如果把对“抢红包”所持态度中的“经常(抢红包)”和“偶尔(抢红包)”统称为“参与抢红包”,那么这次接受调查的职工中“参与抢红包”的人数是多少?并估计该企业“从不(抢红包)”的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,则下列结论:①AC⊥BD;②AC⊥CD;③tan∠DAC=2;④四边形ABCD的面积为31;⑤BD=2.正确的是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,是随机事件的是( )
A.任意画两个直角三角形,这两个三角形相似B.相似三角形的对应角相等
C.⊙O的半径为5,OP=3,点P在⊙O外D.直径所对的圆周角为直角
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
求证:
(1)△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com