精英家教网 > 初中数学 > 题目详情

【题目】如图所示,矩形ABCD中,点ECB的延长线上,使CEAC,连接AE,点FAE的中点,连接BFDF,求证:BFDF

【答案】见解析.

【解析】

延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BEFB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BFDF

延长BF,交DA的延长线于点M,连接BD

∵四边形ABCD是矩形,∴MDBC,∴∠AMF=EBF,∠E=MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BEFB=FM

∵矩形ABCD中,∴AC=BDAD=BC,∴BC+BE=AD+AM,即CE=MD

CE=AC,∴AC=CE= BD =DM

FB=FM,∴BFDF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点IRtABC的内心,∠C90°AC3BC4,将∠ACB平移使其顶点CI重合,两边分别交ABDE,则IDE的周长为(  )

A.3B.4C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°,ADBC的延长线交于点F,点ECF上,且∠DEC=∠BAC

1)求证:DE是⊙O的切线;

2)当AB=AC时,若CE=2EF=3,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ABAC10BC16.点D在边BC上,且点D到边AB和边AC的距离相等.

1)用直尺和圆规作出点D(不写作法,保留作图痕迹,在图上标注出点D);

2)求点D到边AB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则AEF的周长为(  )

A. 2cm B. 3 cm C. 4cm D. 3cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①相等的弦所对的圆心角相等;②对角线相等的四边形是矩形;③正六边形的中心角为60°;④对角线互相平分且相等的四边形是菱形;⑤计算的结果为7;⑥函数y的自变量x的取值范围是x>﹣1;⑦的运算结果是无理数.其中正确的是____(填序号即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.

(1)求抛物线的解析式并写出其顶点坐标;

(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.

当PANA,且PA=NA时,求此时点P的坐标;

当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙OAB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.

(1)求证:DFAC;

(2)求tanE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将绕点B顺时针旋转,得到,连接.

(1)求证:为等边三角形;

(2),求

(3)已知,点在四边形内部(包括边界).若点F由点B运动至点E,其运动过程满足,求点运动路径的长.

查看答案和解析>>

同步练习册答案