【题目】在平面直角坐标系中,抛物线y=交x轴于点A、B(点A在点B的左侧),交y轴于点C.
(1)如图,点D是抛物线在第二象限内的一点,且满足|xD﹣xA|=2,过点D作AC的平行线,分别与x轴、射线CB交于点F、E,点P为直线AC下方抛物线上的一动点,连接PD交线段AC于点Q,当四边形PQEF的面积最大时,在y轴上找一点M,x轴上找一点N,使得PM+MN﹣NB取得最小值,求这个最小值;
(2)如图2,将△BOC沿着直线AC平移得到△B′O′C′,再将△B'O′C′沿B′C′翻折得到△B′O″C′,连接BC′、O″B,则△C′BO″能否构成等腰三角形?若能,请直接写出所有符合条件的点O″的坐标,若不能,请说明理由.
【答案】(1)P′W=3;(2)点O″的坐标为(﹣,)或(,)或(,).
【解析】
1)根据|xD﹣xA|=2,求出点D的坐标,转换四边形PQEF的面积最大即为线段PH最大,PM+MN﹣NB取得最小值,将这三条线段转化为共线即可.
(2)设点O′、B′、C′的坐标,求出点O″的坐标,利用两点间距离公式表示线段长度,分三种情况讨论即可.
(1)令=0,
解得x1=,x2=﹣4,
∴A(﹣4,0),B(,0),
令x=0,y=﹣2,
∴C(0,﹣2),
∵|xD﹣xA|=2,点D是抛物线在第二象限内的一点,
∴D的横坐标为﹣6,
∴D(﹣6,7),
设直线BC的解析式为y=kx+b,
则有
解得
∴直线BC的解析式为y=2x﹣2,
设直线AC的解析式为y=k1x+b1,
则有
解得
∴直线AC的解析式为y=﹣x﹣2,
∵DE∥AC,
∴设直线DE的解析式为y=﹣x+b2,代入点D(﹣6,7),
解得b2=4,
∴直线DE的解析式为y=﹣x+4,
令y=0,此时x=8,
∴F(8,0),
令2x﹣2=﹣x+4,
解得x=,
∴E(,),
∵S四边形PQEF=S△PDF﹣S△PQE=S△PDF﹣S△DAE,
∵D、A、E是固定点,
∴S△DAE是固定值,即要使四边形PQEF的面积最大,只需△PDF的面积最大,
如图1所示,
过点P作x轴的垂线交DF于点H,则S△PDF=PH|xF﹣xD|=7PH,
∴当PH最大时,S△PDF最大,
设点P的坐标为(a,a2+a﹣2),则点H为(a,﹣ a+4),
∴PH=﹣a2﹣2a+6=﹣(a+2)2+8,
∴当a=﹣2时,PH最大,
此时P(﹣2,﹣3),
作点P关于y轴的对称点P′(2,﹣3),
过点B作直线l:y=x﹣,
过点P′作直线l的垂线交l于点W,交y轴于点M,交x轴于点N,
∴NB=NW,
∴PM+MN﹣NB=PM+MN﹣NW=P′N﹣NW=P′W,
∴P′W即为所求,
过P′作y轴的平行线交l于点J,
则J(2,),
则JP′=,
则P′W=JP′=3.
(2)设△BOC在水平方向上移动了2t个单位,则在竖直方向上移动了t个单位,
则C′(﹣2t,﹣2t+t),O′(﹣2t, t),
如图2所示,过O″作y轴的平行线交O′B′的延长线于点M,
O′O″=2×× =,
∴O″M=,O′M=,
∴O″(﹣2t,﹣ +t),
∴C′B==,
C′O″=2,
O″B==
①=2,无解.
②=,解得t=-1,
∴O″(﹣,),
③=2,解得t1=,t2=,
∴O″(,)或(,).
综上所述:点O″的坐标为(﹣,)或(,)或(,).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2-2x-1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩单位:个分别为:24,20,19,20,22,23,20,则这组数据中的众数和中位数分别是
A. 22个、20个 B. 22个、21个 C. 20个、21个 D. 20个、22个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线过点,与轴交于点,,交y轴于点,顶点为.
(1)求抛物线解析式;
(2)在第一象限内的抛物线上求点,使 ,求点的坐标;
(3)是第一象限内抛物线上一点,是线段上一点,点 在点右侧,且满足,当为何值时,满足条件的点只有一个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.
(1)证明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的长,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.
(1)用画树状图或列表等方法列出所有可能出现的结果;
(2)求点A落在第四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,
例如,求点P(1,3)到直线4x+3y﹣3=0的距离.
解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3
所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2
根据以上材料,解决下列问题:
(1)求点P1(1,-1)到直线3x﹣4y﹣5=0的距离.
(2)已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;
(3)如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出△ABP面积的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展“走进中国数学史”为主题的知识竞赛活动,八、九年级各有200名学生参加竞赛,为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,数据如下:
八年级 | 91 | 89 | 77 | 86 | 71 | 九年级 | 84 | 93 | 66 | 69 | 76 |
51 | 97 | 93 | 72 | 91 | 87 | 77 | 82 | 85 | 88 | ||
81 | 92 | 85 | 85 | 95 | 90 | 88 | 67 | 88 | 91 | ||
88 | 88 | 90 | 64 | 91 | 96 | 68 | 97 | 99 | 88 |
整理上面数据,得到如下统计表:
成绩 人数 年级 | |||||
八年级 | 1 | 1 | 3 | 7 | 8 |
九年级 | 0 | 4 | 2 | 8 | 6 |
样本数据的平均数、中位数、众数、方差如下表所示:
统计表 年级 | 平均数 | 中位数 | 众数 | 方差 |
八年级 | 83.85 | 88 | 91 | 127.03 |
九年级 | 83.95 | 87.5 |
| 99.45 |
根据以上信息,回答下列问题:
(1)写出上表中众数的值.
(2)试估计八、九年级这次选拔成绩80分以上的人数和.
(3)你认为哪个年级学生的竞赛成绩较好?说明你的理由.(至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BD、AC的延长线交于点K,连接CD.
(1)求证:∠AKB﹣∠BCD=45°;
(2)如图2,若DC=DB时,求证:BC=2CK;
(3)在(2)的条件下,连接BC交AD于点E,过点C作CF⊥AD于点F,延长CF交AB于点G,连接GE,若GE=5,求CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com