【题目】已知抛物线过点,与轴交于点,,交y轴于点,顶点为.
(1)求抛物线解析式;
(2)在第一象限内的抛物线上求点,使 ,求点的坐标;
(3)是第一象限内抛物线上一点,是线段上一点,点 在点右侧,且满足,当为何值时,满足条件的点只有一个?
【答案】(1);(2);(3).
【解析】
(1)已知抛物线过定点,用待定系数法即可求解;(2)过点D作DH⊥y轴交y轴于点H,DH=HC,OA=OC,∠DHC=∠AOC=90°得△DHC和△AOC都是等腰直角三角形,从而得出∠DCH=∠ACO=45°,DC=,AC=,∠ACD=90°,DC⊥AC,延长DC至N使CN=DC=,根据,,得出S△ADC=S△ACM,得出直线AC的解析式为:y=x+3,从而得出直线NM的解析式为:y=x+1,由求得点M的坐标为:;(3)延长DF交x轴于点E,过点D作DG⊥x轴交x轴于点G,设OE=a,则EA=ED=a+3,GE=a+1,在Rt△DGE中,DG2+GE2=DE2,解得a=2,解得E(2,0)得直线DE的解析式为: ,联立,由此可得,由∠APF是△DPF的一个外角,可得△FDP≌△PAQ,,易得,,,设DP=x,则PA= ,则AQ=m+3,由,整理得,令△=0,解得.
(1)依题有
解得,,
抛物线的解析式为;
(2)过点作轴于点,
由(1)得,
,,
又,
和都是等腰直角三角形,
,
,
,
,即,
延长至使,
易得
过点作交抛物线于点,
,,
,
依题有的解析式为:,
设的解析式为:
将点代入的解析式得,,
的解析式为:,
联立
解得,, (舍去)
;
(3)如图,延长交轴于点,过点作 轴于点,
,
.
设,则,,
在中,
即,解得,.
直线的解析式为:
联立
解得:,,
是第一象限内抛物线上一点,
是的一个外角,
,
,
又,
,
又,
,
,
易得,,,
设,则,
依题有,
,
,
整理得,,
.
∵当时,满足条件的只有一个,
,
解得,.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,弦CD⊥AB于点E,F是弧AD上的一点,AF,CD的延长线相交于点G.
(1)若⊙O的半径为3,且∠DFC=45°,求弦CD的长.
(2)求证:∠AFC=∠DFG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=(x>0)的图象交边AB于点D.
(1)用m的代数式表示BD的长;
(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD
①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;
②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一把折叠椅子,如图2是椅子完全打开支稳后的侧面示意图,表示地面所在的直线,其中和表示两根较粗的钢管,表示座板平面,,交于点F,且,长,,长24cm,长24cm,
(1)求座板的长;
(2)求此时椅子的最大高度(即点D到直线的距离).(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离y(m)与小雪离开出发地的时间x(min)之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=交x轴于点A、B(点A在点B的左侧),交y轴于点C.
(1)如图,点D是抛物线在第二象限内的一点,且满足|xD﹣xA|=2,过点D作AC的平行线,分别与x轴、射线CB交于点F、E,点P为直线AC下方抛物线上的一动点,连接PD交线段AC于点Q,当四边形PQEF的面积最大时,在y轴上找一点M,x轴上找一点N,使得PM+MN﹣NB取得最小值,求这个最小值;
(2)如图2,将△BOC沿着直线AC平移得到△B′O′C′,再将△B'O′C′沿B′C′翻折得到△B′O″C′,连接BC′、O″B,则△C′BO″能否构成等腰三角形?若能,请直接写出所有符合条件的点O″的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生对篮球、羽毛球、乒乓球、踢毽子、跳绳等5项体育活动的喜欢程度,某校随机抽查部分学生,对他们最喜欢的体育项目(每人只选一项)进行了问卷调查,并将统计数据绘制成如下两幅不完整的统计图:
请解答下列问题:
(1)m= %,这次共抽取了 名学生进行调查;请补全条形统计图;
(2)若全校有800名学生,则该校约有多少名学生喜爱打篮球?
(3)学校准备从喜欢跳绳活动的4人(二男二女)中随机选取2人进行体能测试,求抽到一男一女学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交
于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com