分析 首先连接OA、OB,在AB弧上任取一点C,连接AC、BC,由PA、PB是⊙O的切线,根据切线的性质,可得∠OAP=∠OBP=90°,又由∠APB=40°,即可求得∠AOB的度数,然后分别从①若C点在优弧AB上与②若C点在劣弧AB上去分析,即可求得∠ACB的度数.
解答 解:连接OA、OB,在AB弧上任取一点C,连接AC、BC,![]()
∵PA、PB是⊙O的切线,A、B为切点,
∴∠OAP=∠OBP=90°,
∵∠APB=40°,
∴在四边形OAPB中,∠AOB=360°-∠APB-∠OAP-∠OBP=140°.
①若C点在优弧AB上,则∠ACB=$\frac{1}{2}$∠AOB=70°;
②若C点在劣弧AB上,则∠ACB=180°-70°=110°,
故答案为:70°或110°.
点评 此题主要考查了切线的性质与圆周角的性质,解题的关键是注意数形结合思想与分类讨论思想的应用,注意辅助线的作法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com