精英家教网 > 初中数学 > 题目详情

【题目】某股民上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)(周六、周日休盘)

星期

每股

涨跌

+4

+4.5

1

1.5

4

1)星期五收盘时,每股是多少元?

2)本周内最高价是每股多少元?最低价是每股多少元?

3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,若该股民在星期五收盘前将全部股票卖出,他的收益情况如何?

【答案】129元(2)最高价35.5元,最低价29元(3

【解析】

1)利用表格数据直接进行有理数的加减运算;(2)利用表格数据直接进行有理数的加减运算;(3)收益=卖出股票费-买进股票费-买进手续费-卖出交易税计算即可;

1)根据题意得,周五收盘时,每股价格为:27+4+4.5-1-1.5-4=29(元);

2)根据已知表格得,周一涨,周二涨,周三、周四、周五均跌,

∴本周最高价在周二,最低价在周五;

即最高价=27+4+4.5=35.5(元);最低价=27+4+4.5-1-1.5-4=29(元);

3)依题意得,

买进的手续费:(元),

卖出的交易税:(元),

收益=卖出股票费-买进股票费-买进手续费-卖出交易税,

故收益为:=1887(元).

答:周五收盘时每股价格为29元;本周的最高价是每股35.5元,最低价是每股29元;若在周五收盘前卖出,该股民收益为1887元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,M为等腰△ABD的底AB的中点,过DDCAB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点PA点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).

(1)t(s)为何值时,点QBC上运动,t(s)为何值时,点QCD上运动;

(2)求St之间的函数关系式;

(3)当t为何值时,S有最大值,最大值是多少?

(4)当点QCD上运动时,直接写出t为何值时,△MPQ是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角ABC内接于O,若O的半径为6,sinA=,求BC的长.

【答案】BC=8.

【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.

试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.

点睛:直径所对的圆周角是直角.

型】解答
束】
22

【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点BBCx轴,垂足为C,且SABC=5.

(1)求一次函数与反比例函数的解析式;

(2)根据所给条件,请直接写出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标分别为,将线段先向上平移个单位长度,再向右平移个单位长度,得到线段,连接,构成平行四边形

1)请写出点的坐标为________,点的坐标为________________

2)点轴上,且,求出点的坐标;

3)如图,点是线段上任意一个点(不与重合),连接,试探索之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的ABC,若小方格边长为1,格点ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.

(1)在如图所示的网格平面内作出平面直角坐标系;

(2)作出ABC关于y轴对称的三角形A1B1C1

(3)判断ABC的形状,并求出ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.

1两地相距______千米,甲的速度为______千米/分;

2)直接写出点的坐标______,求线段所表示的之间的函数表达式;

3)当乙到达终点时,甲还需______分钟到达终点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,高AD=12cm,BC的长为(

A. 14 cm B. 4 cm C. 14cm4 cm D. 以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,,直线经过点,且.

(1)当直线绕点旋转到图1的位置时,

①求证:△ADC≌△CEB.

②求证:DE=AD+BE.

(2)当直线绕点旋转到图2的位置时,判断的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,在等边三角形ABC内有一点P,且PA=2,PBPC=1,求∠BPC度数的大小和等边三角形ABC的边长.

解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.

(1)△PPB 三角形,△PPA 三角形,∠BPC °;

(2)利用△BPC可以求出△ABC的边长为

如图丙,在正方形ABCD内有一点P,且PABPPC=1;

(3)求∠BPC度数的大小;

(4)求正方形ABCD的边长.

查看答案和解析>>

同步练习册答案