【题目】宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系: .
(1)工人甲第几天生产的产品数量为70件?
(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?
【答案】(1)工人甲第12天生产的产品数量为70件;(2),第11天时,利润最大,最大利润是845元.
【解析】
试题分析:(1)根据y=70求得x即可;
(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.
试题解析:(1)根据题意,得:
∵若7.5x=70,得:x=>4,不符合题意;
∴5x+10=70,解得:x=12.
答:工人甲第12天生产的产品数量为70件;
(2)由函数图象知,当0≤x≤4时,P=40,当4<x≤14时,设P=kx+b,将(4,40)、(14,50)代入,得:,解得:,∴P=x+36;
①当0≤x≤4时,W=(60﹣40)7.5x=150x,∵W随x的增大而增大,∴当x=4时,W最大=600元;
②当4<x≤14时,W=(60﹣x﹣36)(5x+10)=﹣5x2+110x+240=﹣5(x﹣11)2+845,∴当x=11时,W最大=845,∵845>600,∴当x=11时,W取得最大值,845元,∴
答:第11天时,利润最大,最大利润是845元.
科目:初中数学 来源: 题型:
【题目】如图,AB=4,C为射线BA上一动点,以BC为边向上作正三角形BCD,⊙O过A、C、D三点,E为⊙O上一点,满足AD=ED,直线CE交直线AD于F.
(1)求证:CE∥BD;
(2)设CF=a,若C在线段AB上运动.
①求点E运动的路径长;
②求a的范围;
(3)若AC=1,求 tan∠DEC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小明从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求第二次抽取卡片上的数字小于第一次抽取卡片上的数字的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数的函数图象经过两点,过两点作一直线.
(1)求反比例函数解析式;
(2)将反比例函数向下平移1个单位,得函数________;函数与坐标轴的交点为__________;
(3)将直线向下平移个单位后与函数的图象有唯一交点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°-α)=1.
(1)当α=30°时,验证sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2020个正方形的面积是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是( )
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点A(4,0)、B(1,0),交y轴于点C.
(1)求抛物线的解析式.
(2)点P是直线AC上方的抛物线上一点,过点P作于点H,求线段PH长度的最大值.
(3)Q为抛物线上的一个动点(不与点A、B、C重合),轴于点M,是否存在点Q,使得以点A、Q、M三点为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B,C三位同学到小新家做客,小新用如图所示的一次性茶杯给三位同学分别倒了一杯开水,三个杯子从外观看无任何区别,若三位同学均喝完杯中水后外出玩耍,回来后对水杯放置的位置均已忘记.
(1)现A同学随手从三个已用杯子中拿一个杯子,“拿到自己已用杯子”这一事件是________事件,“拿到大家都没用过的杯子”这一事件是__________事件;
(2)A同学先取一个杯子,B同学在剩下的两个杯子中取一个杯子,求两同学均恰好拿到自己已用杯子的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com