精英家教网 > 初中数学 > 题目详情

已知α、β是方程x2+2x-1=0的两根,则α3+5β+10的值为________.

-2
分析:根据一元二次方程的解的定义,求得α32•α①;然后利用根与系数的关系推知α+β=-2②;最后将所求的代数式转化为含有(α+β)形式的代数式,将①②代入其中便可求得α3+5β+10的值.
解答:∵α是方程x2+2x-1=0的根,
∴α2=1-2α,
∴α32•α=(1-2α)•α=α-2α2=α-2(1-2α)=5α-2,
又∵α+β=-2,
∴α3+5β+10=(5α-2)+5β+10=5(α+β)+8=5×(-2)+8=-2;
故答案是:-2.
点评:本题综合考查了一元二次方程的解的定义、根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a,b是方程x2-2x-1=0的两个根,则a2+a+3b的值是(  )
A、7
B、-5
C、7
2
D、-2

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知m,n是方程x2-2x-1=0的两根,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b是方程x2+2x-1=0的两个根,求代数式(
1
a
-
1
b
)(ab2-a2b)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面材料:
设一元二次方程ax2+bx+c=0的两根为x1、x2,则两根与方程中各系数之间有如下关系:x1+x2=-
b
a
x1x2=
c
a

根据该材料解答下列问题:已知a、b是方程x2+6x-3=0的两个实数根;
(1)则a+b=
 
,a•b=
 

(2)求
a
b
+
b
a
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知a,b是方程x2+x-1=0的两根,求a2+2a+b的值.

查看答案和解析>>

同步练习册答案