【题目】我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°, BD=4,CF=6, 则AO的长是 ( )
A.B.C.D.4
科目:初中数学 来源: 题型:
【题目】某工厂准备今年春季开工前美化厂区,计划对面积为的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用6天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?
(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应的扇形的圆心角为 度,并将条形统计图补充完整.
(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC的垂直平分线分别交BC、AD于点E、F,垂足为O,连接AE、CF.
(1)求证:四边形AECF为菱形;
(2)若AB=5,BC=7,则AC= 时,四边形AECF为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某区九年级数学教学质量检测情况,进行了抽样调查,其过程如下,请补全表一、表二中的空白,并回答提出的问题.
收集数据:随机抽取甲、乙两所学校中各自取20名学生的数学成绩进行分析
甲:91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 44 91
乙:84 93 66 69 76 87 77 82 85 88 90 88 67 88 91 96 68 97 59 88
整理数据:表一
分段 学校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 | 0 | 0 | 1 | 2 | 8 | 5 |
分析数据:表二
统计量 学校 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | 115.25 |
得出结论:
(1)若甲学校有400名九年级学生,估计这次考试成绩80分(包含80分)以上人数为 .
(2)可以推断出 (填:甲或乙)学校学生的数学水平较高,理由是 (至少从两个不同角度说明推断的合理性).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,BC=12, 高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.
(1)求证:;
(2)矩形EFGH可以为正方形吗?若能,请求出正方形的面积,若不能,请说明理由;
(3)设EF=x, EH=y,设矩形EFGH的面积为S,求S与x之间的函数表达式,并求出S的最值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】无影塔位于河南汝南城南,俗传冬至正午无塔影,故称无影塔;相传为唐代和尚悟颗所建,故又称“悟颖塔”,该塔应建于北宋中、早期,为豫南地区现存最古之砖塔.某数学小组为了度量塔高进行了如下操作:用一架无人机在距离塔基8米处垂直起飞30米至点处,测得塔基处的俯角为,将无人机沿水平方向向右飞行米至点,在此处测得塔顶的俯角为,请依据题中数据计算无影塔的高度.(结果精确到,参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.
(1)求证:四边形AECF为平行四边形;
(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,A,B两个顶点在x轴上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,得到△A'B'C',设点B的对应点B'的横坐标为2,则点B的横坐标为( )
A.﹣1B.C.﹣2D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com