【题目】某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完。设分配给甲店A型产品x件,两商店销售这两种产品每件的利润(元)如下表:
A型利润 | B型利润 | |
甲店 | 200 | 170 |
乙店 | 160 | 150 |
(1)分配给乙店B型产品 件(用含x的代数式表示)。
(2)设这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并直接写出x的取值范围。
(3)若公司要求总利润不低于17560元,有几种不同分配方案?哪种方案总利润最大?请求出最大利润。
【答案】(1)(x-10);
(2)W=20x+16800,10≤x≤40;
(3)见详解.
【解析】
(1)根据A型、B型产品的数量关系就可以分别表示出甲店B型产品的件数,乙店A型产品的件数和B型产品的件数.
(2)根据所有产品数量及所给产品数量分别得到甲店B型商品的数量,乙店A型商品的数量,乙店B型商品的数量,那么总利润等于每件相应商品的利润×相应件数之和;
(3)让(2)中的代数式≥17560,结合(1)中自变量的取值可得相应的分配方案.
解:(1)设分配给甲店A型产品x件,则有分配给乙店B型产品:
30-(40-x)=(x-10)件;
故答案为(x-10).
(2)由题意,得
W=200x+170(70-x)+160(40-x)+150(x-10)
=20x+16800.
则 ,
解得:10≤x≤40.
(3)由题意可得:20x+16800≥17560,
解得x≥38,
又∵x≤40,
∴38≤x≤40,
∴x取38,39,40,有三种方案.分别为:
方案 | 商店 | A型 | B型 |
方案一 | 甲店 | 38件 | 32件 |
乙店 | 2件 | 28件 | |
方案二 | 甲店 | 39件 | 31件 |
乙店 | 1件 | 29件 | |
方案三 | 甲店 | 40件 | 30件 |
乙店 | 30件 |
∵W是x的一次函数,且W随x的增大而增大
∴当x=40时,W最大=20×40+16800=17600(元),即第三种分配方案该公司可获得最大总利润,最大总利润是17600元.
科目:初中数学 来源: 题型:
【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。例如:一次函数y=x1,它们的相关函数为y= .
(1)已知点A(5,8)在一次函数y=ax3的相关函数的图象上,求a的值;
(2)已知二次函数y=x+4x .
①当点B(m, )在这个函数的相关函数的图象上时,求m的值;
②当3x3时,求函数y=x+4x的相关函数的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(-1,0)、B(0,3)、C(2,4)、D(3,0),点P是x轴上一点,直线CP将四边形ABCD的面积分成1:2的两部分,则P点坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针 OA、OB 分别从 OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30°,OB 运动速度为每秒10°,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:
(1)如图①,若OA顺时针转动,OB逆时针转动,= 秒时,OA与OB第一次重合;
(2)如图②,若OA、OB同时顺时针转动,
①当=3秒时,∠AOB= °;
②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0;②a>0;③b>0; ④c>0; ⑤9a+3b+c<0; ⑥2a+b=0,则其中结论正确的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
第1个等式:a1=
第2个等式:a2=
第3个等式:a3=
第4个等式:a4=…
请解答下列问题:
(1)按以上规律列出第5个等式:a5= ;
(2)用含有n的代数式表示第n个等式:an= (n为正整数):
(3)求a1+a2+a3+a4+……+a100的值;
(4)探究计算:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.
(1)求证:△DOE≌△BOF;
(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com