【题目】如图,在平面直角坐标系中,已知点A(0,2),△AOB和△APQ都是等边三角形.
⑴求点B的坐标;
⑵试判断直线AB与直线BQ的位置关系,并证明;
⑶连接OQ,当OQ∥AB时,求P点的坐标.
【答案】(1);(2)AB⊥BQ,证明见解析;(3)P.
【解析】
(1)过B作BC⊥OC于点C,易得∠BOC=30°,借助直角三角形的边角关系即可解决问题;
(2)证明△APO≌△AQB,得到∠ABQ=∠AOP=90°,即AB⊥BQ;
(3)当点P在x轴负半轴上时,点Q在点B的下方,易得△BOQ为直角三角形,利用勾股定理求出BQ,由可知OP=BQ,从而得到P点坐标;当点P在x轴正半轴时,点Q必在第一象限,OQ和AB不可能平行.
(1)如下图所示,过B作BC⊥OC于点C,
∵△AOB为等边三角形,且OA=2,
,
,
,
(2)AB⊥BQ,证明如下:
∵△APQ、△AOB都是等边三角形,
,,
∴
在△APO和△AQB中,
即AB⊥BQ.
(3)当点P在x轴负半轴上时,点Q在点B的下方,
∵AB∥OQ,AB⊥BQ,
∴OQ⊥BQ,∠BOQ=∠ABO=60°
∴∠BQO=90°
∴∠OBQ=30°,
在Rt△BOQ中,OB=OA=2,
∴,
又∵
∴此时P点坐标为
当点P在x轴正半轴时,点Q必在第一象限,OQ和AB不可能平行.
所以当OQ∥AB时, P点的坐标为.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=DE,AC=DF,BF=EC
(1)求证:△ABC≌△DEF;
(2)若,求BF的长;
(3)∠B=60°,∠D=70°,求∠AGD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°.
⑴求∠NMB的大小;
⑵若将图中的∠A的度数改为70°,其余条件不变,则∠NMB= ;
⑶你发现有什么样的规律?若将∠A改为钝角,对这个问题规律性的认识是否需要加以修改?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生参加选课走板情况,学校研究小组随机抽取若干人进行调查分析,根据收集整理的数据绘制成不完整的条形统计图和扇形统计图,课程类别代码如下:
A:文学类课程 B:益智类课程 C:艺术类课程
根据以上信息,解答下列问题:
(1)该小组采用的调查方式是 ,被调查的样本容量是 ;
(2)将条形统计图和扇形统计图补充完整;
(3)若全校有1280名学生,选择艺术类课程的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com