精英家教网 > 初中数学 > 题目详情
10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,M是CD上的点,DH⊥BM于H,DH的延长线交AC的延长线于E.求证:
(1)△AED∽△CBM;
(2)AE•CM=AC•CD.

分析 (1)由于△ABC是直角三角形,易得∠A+∠ABC=90°,而CD⊥AB,易得∠MCB+∠ABC=90°,利用同角的余角相等可得∠A=∠MCB,同理可证∠1=∠2,而∠ADE=90°+∠1,∠CMB=90°+∠2,易证∠ADE=∠CMB,从而易证△AED∽△CBM;
(2)由(1)知△AED∽△CBM,那么AE:AD=CB:CM,于是AE•CM=AD•CB,再根据△ABC是直角三角形,CD是AB上的高,易知△ACD∽△CBD,易得AC•CD=AD•CB,等量代换可证AE•CM=AC•CD.

解答 证明:(1)∵△ABC是直角三角形,
∴∠A+∠ABC=90°,
∵CD⊥AB,
∴∠CDB=90°,
即∠MCB+∠ABC=90°,
∴∠A=∠MCB,
∵CD⊥AB,
∴∠2+∠DMB=90°,
∵DH⊥BM,
∴∠1+∠DMB=90°,
∴∠1=∠2,
又∵∠ADE=90°+∠1,∠CMB=90°+∠2,
∴∠ADE=∠CMB,
∴△AED∽△CBM;

(2)∵△AED∽△CBM,
∴$\frac{AE}{BC}$=$\frac{AD}{CM}$,
∴AE•CM=AD•CB,
∵△ABC是直角三角形,CD是AB上的高,
∴△ACD∽△CBD,
∴AC:AD=CB:CD,
∴AC•CD=AD•CB,
∴AE•CM=AC•CD.

点评 本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A=∠MCB以及∠ADE=∠CMB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.数学兴趣小组开展了一次课外活动,过程如下:
如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图①的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并证明.
(3)如图③,固定三角板直角顶点在D点不动,转到三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC的延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某项工程,若由甲队单独施工,刚好如期完成;若由乙队单独施工,则要超期3天完成.现由甲、乙两队同时施工2天后,剩下的工程由乙队单独做,刚好如期完成.问规定的工期是多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30°,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时20海里.求A、D两点间的距离.(结果不取近似值)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.甲乙两轮船同时从港口A开出,其中甲轮船每小时航行12海里,乙轮船每小时航行16海里,它们离开港口一个半小时后分别位于B,C两处,且相距30海里,如果甲轮船的航行方向为北偏西40°,请你确定乙轮船的航行方向.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图:矩形ABCD的对角线AC,BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,试判断四边形CODP的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,O为原点,点A (0,-1),点B (4,-1),四边形ABCD是正方形,点C在第一象限.
(1)直线AC的解析式为y=x-1;
(2)过点D且与直线AC平行的直线的解析式为y=x+3;
(3)与直线AC平行且到直线AC的距离为3$\sqrt{2}$的直线的解析式为y=x+5或y=x-7;
(4)已知点T是AB的中点,P,Q是直线AC上的两点,PQ=6$\sqrt{2}$,点M在直线AC下方,且点M在直线DT上,当∠PMQ=90°,且PM=QM时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知一元二次方程ax2+bx+c=0的一个根是x1=0,二次函数y=ax2+bx+c关于直线x=1对称,则方程的另一根为(  )
A.x2=0B.x2=1C.x2=-2D.x2=2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,D、E分别为△ABC的边AB、AC上的点,且∠ADE=∠ACB.
(1)求证:AD•AB=AE•AC;
(2)如果△ABC的面积为m,DE=3,BC=5,求△ADE的面积.

查看答案和解析>>

同步练习册答案