分析 如图1,所示,由∠CFE+∠AFE=180°,可知点A、F、C在一条直线上,先求得AC的长,然后由△AEF∽△ACD可求得ED的长;如图2所示,可证明四边形CDEF为正方形从而可求得ED的长.
解答 解:如图1所示:![]()
由翻折的性质可知:EF=ED,∠EFC=∠EDC=90°,
∵△AEF为直角△,
∴∠AFE=90°.
∴∠CFE+∠AFE=180°.
∴点A、F、C在一条直线上.
在Rt△ABC中,AC=$\sqrt{A{B}^{2}+B{C}^{2}}=\sqrt{{6}^{2}+{8}^{2}}$=10.
设DE=x,则EF=x.
∵∠EAF=∠DAC,∠EFA=∠CDA,
∴△AEF∽△ACD.
∴$\frac{EF}{DC}=\frac{AE}{AC}$,即$\frac{x}{6}=\frac{8-x}{10}$.
解得:x=3.
∴ED=3.
如图2所示:![]()
∵∠AEF=90°,
∴∠FED=90°.
∴∠FED=∠D=∠DCF=90°.
∴四边形CDEF为矩形.
由翻折的性质可知:DE=EF.
∴四边形CDEF为正方形.
∴DE=DC=6.
综上所述,ED的长为3或6.
故答案为:3或6.
点评 本题主要考查的是相似三角形的性质和判定、勾股定理、矩形、正方形的性质和判定,根据题意画出图形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 1号 | 2号 | 3号 | 4号 | 5号 | 合计 | |
| 甲 | 100 | 98 | 110 | 89 | 103 | 500 |
| 乙 | 89 | 100 | 95 | 119 | 97 | 500 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1$\frac{1}{2}$abc | B. | a•b÷4+3 | C. | 3xy÷8 | D. | -$\frac{3}{4}$mn |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com