精英家教网 > 初中数学 > 题目详情

【题目】请阅读下列材料:

提出问题:现有2个边长是1的小正方形,请你把它们分割后,(图形不得重叠,不得遗漏),组成一个大的正方形,解决这个问题的方法不唯一,但有一个解题的思路是:设新正方形的边长为.依题意,割补前后图形的面积相等,有,解得,由此可知新正方形的边长等于原来正方形的对角线的长.

1)解决问题:现有5个边长为1的正方形,排列形式如图3,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.

小东同学的做法是:设新正方形的边长为).依题意,割补前后图形的面积相等,有 ,解得 .由此可知新正方形的边长等于两个正方形组成的矩形对角线的长.请你在图3中画出分割线,在图4中拼出新的正方形.

2)模仿演练:

现有10个边长为1的正方形,排列形式如图5,请把它们分割后拼接成一个新的正方形.要求:在图5中画出分割线,并在图6中的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.

3)应用创新:

7是一个大的矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图7中画出分割线,在图8中要求画出三块图形组装成大正方形的示意图).

【答案】1)见解析; 2)见解析;(3)见解析

【解析】

1)根据图3的边长求出矩形的面积.然后再求出正方形的边长;

2)根据图5的边长求出矩形的面积,然后再求出正方形的边长;

3)根据面积是10,所以拼接后的正方形的边长是,然后根据网格的特点进行剪接.

解:(1)设新正方形的边长为).

,解得:

如图所示:

故答案为:

2)设新正方形的边长为(x>0),依题意,割补前后图形的面积相等,

,解得:

3)如图所示:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,的平分线相交于点,过点于点,交于点,过点于点,下列四个结论:

;②

③点各边的距离相等;③设,则

其中正确的结论是__________.(填所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,AHC=90°时,DH=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为(5,5,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.

(1)∠BAO的度数.(直接写出结果)

(2)当点PAB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图),求点P的运动速度.

(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时,点P的坐标.

(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种蔬菜每千克售价(元)与销售月份之间的关系如图1所示,每千克成本(元)与销售月份之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(61).

1)求出之间满足的函数表达式,并直接写出的取值范围;

2)求出之间满足的函数表达式;

3)设这种蔬菜每千克收益为元,试问在哪个月份出售这种蔬菜,将取得最大值?并求出此最大值.(收益=售价-成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有公路l1同侧、l2异侧的两个城镇AB,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇AB的距离必须相等,到两条公路l1l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,ECD上一点,连接BE, ∠EBC=15°,将ΔEBC绕点C按顺时针方向旋转90°得到ΔFDC,连接EF,则∠EFD的度数为(

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

同步练习册答案