精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰直角△ABC的斜边AB下方有一动点D,∠ADB90°BE平分∠ABDCD于点E,则的最小值是_____

【答案】

【解析】

如图,取AB的中点O,连接OCODAE.想办法证明CE=CA,当CD是直径时的值最小.

如图,取AB的中点O,连接OCODAE

∵∠ACB=∠ADB90°OAOB

OCODAB

ACBD四点共圆,

CACB

∴∠CBA=∠CBA45°

∴∠CDA=∠CBA45°,∠CDB=∠CAB45°

∴∠CDB=∠CDA

BE平分∠ABD

AE平分∠BAD

∴∠BAE=∠DAE

∵∠CAE=∠CAB+BAE45°+BAE,∠CEA=∠EDA+EAD45°+DAE

∴∠CAE=∠CEA

CACE=定值,

∴当CD的值最大时,的值最小,

CD是直径时,的值最小,最小值=

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中函数 y kx y 的图象交于 A、B 两点 A y 轴的垂线交函数的图象于点 C,连接 BC,则ABC 的面积为(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点D在边AB上,且,动点P从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形,设点P运动的时间为秒,正方形重叠部分的面积为

1)用含有的代数式表示线段的长.

2)当点落在的边上时,求的值.

3)求的函数关系式.

4)当点P在线段AD上运动时,做点N关于CD的对称点,当的某一个顶点的连线平分的面积时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy,对于点Pxpyp)和图形G,设QxQyQ)是图形G上任意一点,|xpxQ|的最小值叫点P和图形G的“水平距离”,|ypyQ|的最小值叫点P和图形G的“竖直距离”,点P和图形G的“水平距离”与“竖直距离”的最大值叫做点P和图形G的“绝对距离”

例如:点P(﹣23)和半径为1O,因为O上任一点QxQyQ)满足﹣1xQ1,﹣1yQ1,点PO的“水平距离”为|2xQ|的最小值,即|2﹣(﹣1|=1,点PO的“竖直距离”为|3yQ|的最小值即|31|=2,因为21,所以点PO的“绝对距离”为2

已知O半径为1A2),B41),C43

1直接写出点AO的“绝对距离”

已知D是△ABC边上一个动点,当点DO的“绝对距离”为2时,写出一个满足条件的点D的坐标;

2)已知E是△ABC边一个动点,直接写出点EO的“绝对距离”的最小值及相应的点E的坐标

3)已知PO上一个动点,△ABC沿直线AB平移过程中,直接写出点P与△ABC的“绝对距离”的最小值及相应的点P和点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数,下列说法正确的个数是(

①函数图象位于第一、三象限;②函数值 y x 的增大而减小;③若 A(-1 ),B2),C(1)是图象上三个点,则 <<;④P 为图象上任一点,过 P PQy 轴于点 Q,则OPQ 的面积是定值.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+(4a1)x4x轴交于点AB,与y轴交于点C,且OC=2OB,点D为线段OB上一动点(不与点B重合),过点D作矩形DEFH,点HF在抛物线上,点Ex轴上.

1)求抛物线的解析式;

2)当矩形DEFH的周长最大时,求矩形DEFH的面积;

3)在(2)的条件下,矩形DEFH不动,将抛物线沿着x轴向左平移m个单位,抛物线与矩形DEFH的边交于点MN,连接MN.若MN恰好平分矩形DEFH的面积,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰RtABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列赋予实际意义的叙述中不正确的是(

A. 若葡萄的价格是4/千克,则表示买千克葡萄的金额

B. 表示一个正方形的边长,则表示这个正方形的周长

C. 将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,表示桌面受到的压强,则表示小木块对桌面的压力

D. 4分别表示一个两位数中的十位数字和个位数字,则表示这个两位数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水8吨以内(包括8吨)和用水8吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图所示.

1)求出自来水公司在这两个用水范围内的收费标准;

2)若芳芳家6月份共交水费28.1元,请写出用水量超过8吨时应交水费y(元)与用水量x(吨)之间的函数关系,并求出芳芳家6月份的用水量.

查看答案和解析>>

同步练习册答案