精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边ABC中,点DE分别在边BCAC上,且DEAB,过点EEFDE,交BC的延长线于点F

1)求∠F的大小;

2)若CD=3,求DF的长.

【答案】1)∠F=30°;(2DF=6

【解析】

(1)、根据等边三角形的性质得出∠B=60°,根据DEAB得出∠EDC=60°,根据垂直得出∠DEF=90°,根据三角形内角和定理可得∠F的度数;

(2)、根据∠ACB=EDC=60°得出EDC为等边三角形,则ED=DC=3,根据∠DEF=90°,∠F=30°得出DF=2DE=6.

1)∵△ABC是等边三角形,

∴∠B=60°

DEAB

∴∠EDC=B=60°

EFDE

∴∠DEF=90°

∴∠F=90°﹣∠EDC=30°

2)∵∠ACB=60°,∠EDC=60°

∴△EDC是等边三角形.

ED=DC=3

∵∠DEF=90°,∠F=30°

DF=2DE=6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtOAB的顶点Ax轴的正半轴上.顶点B的坐标为(3),点C的坐标为(10),且∠AOB=30°P为斜边OB上的一个动点,则PA+PC的最小值为(   )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD中,M、N分别为ABCD的中点.

(1)求证:四边形AMCN是平行四边形;

(2)若AC=BC=5,AB=6,求四边形AMCM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1D是边长为4㎝的等边△ABC的边AB上的一点,DQAB交边BC于点QRQBC交边AC于点RRPAC交边AB于点E,交QD的延长线于点P.

1 2

①请说明△PQR是等边三角形的理由;

②若BD=1.3㎝,则AE=_______㎝(填空)

③如图2,当点E恰好与点D重合时,求出BD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC中,AGBC于点G,以A为直角顶点,分别以ABAC为直角边,向ABC作等腰RtABE和等腰RtACF,过点EF作射线GA的垂线,垂足分别为PQ

1)求证:⊿AEP≌⊿BAG

2)试探究EPFQ之间的数量关系,并证明你的结论;

3)如图2,若连接EFGA的延长线于H,由(2)中的结论你能判断EHFH的大小关系吗?并说明理由;

4)在(3)的条件下,若BC=AG=10,请直接写出SAEF= .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某居民小区一处圆柱形的输水管道破裂维修人员为更换管道需确定管道圆形截面的半径如图是水平放置的破裂管道有水部分的截面

(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);

(2)若这个输水管道有水部分的水面宽AB=8 cm水面最深地方的高度为2 cm求这个圆形截面的半径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图所示,其中图象与x轴交于点A(-1,0),与y轴交于点C(0,-5),且经过点D(3,8).(1)求此二次函数的解析式; (2)用配方法将将此二次函数的解析式写成的形式,并直接写出此二次函数图象的顶点坐标以及它与x轴的另一个交点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABCBC边上的一点,AD=BD,ADC=80°.

(1)求∠B的度数;

(2)若∠BAC=70°,判断ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P与图形W,若点Q为图形W上任意一点,点Q关于第一、三象限角平分线的对称点为Q,且线段PQ,的中点为Mm,0,则称点P是图形W关于点Mm,0)的关联点”.

1)如图1,若点P是点Q(0,)关于原点的关联点,则点P的坐标为 ;

2)如图2,在ABC中,A2,2),B-2,0),C0-2),

①将线段AO向右平移dd>0)个单位长度,若平移后的线段上存在两个ABC关于点(2,0)的关联点,则d的取值范围是 .

②已知点Sn+2,0)和点Tn+4,0,若线段ST上存在ABC关于点Nn,0)的关联点,求n的取值范围.

查看答案和解析>>

同步练习册答案