分析 (1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;
(2)先根据垂径定理求出AE的长,设NE=x,则OE=x-1,NE=ED=x,r=OD=OE+ED=2x-1,连结AO,则AO=OD=2x-1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论;
(3)根据线段垂直平分线的判定得到AE平分ND,于是得到S△AEN=S△ADE通过△CMN∽△AEN,即可得到结论.
解答 (1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,
∴∠BAD=∠BCD,
∵AE⊥CD,AM⊥BC,
∴∠AMC=∠AEN=90°,
∵∠ANE=∠CNM,
∴∠BCD=∠BAM,
∴∠BAM=BAD,
在△ANE与△ADE中,
$\left\{\begin{array}{l}{∠BAM=∠BAD}\\{AE=AE}\\{∠AEN=∠AED}\end{array}\right.$,
∴△ANE≌△ADE,
∴AD=AN;
(2)解:∵AB=4$\sqrt{2}$,AE⊥CD,∴AE=2$\sqrt{2}$,
又∵ON=1,
∴设NE=x,则OE=x-1,NE=ED=x,
r=OD=OE+ED=2x-1
连结AO,则AO=OD=2x-1,
∵△AOE是直角三角形,AE=2$\sqrt{2}$,OE=x-1,AO=2x-1,
∴(2$\sqrt{2}$)2+(x-1)2=(2x-1)2,
解得x=2,
∴r=2x-1=3;
(3)解:∵AD=AN,AB⊥CD,
∴AE平分ND,
∴S△AEN=S△ADE
∵S△CMN:S△AND=1:8,
∴S△CMN:S△AEN=1:4,
又∵△CMN∽△AEN,
∴($\frac{CM}{AE}$)2=$\frac{1}{4}$,
∵AE=4,
∴CM=2.
点评 本题考查的是垂径定理,相似三角形的判定和性质,勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com