精英家教网 > 初中数学 > 题目详情

【题目】如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于(  )

A. 20° B. 30° C. 40° D. 50°

【答案】A

【解析】

由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.

如图,因为四边形ABCD为矩形,

所以∠B=∠D=∠BAD=90°,

因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,

所以∠D′=∠D=90°,∠4=α,

因为∠1=∠2=110°,

所以∠3=360°-90°-90°-110°=70°,

所以∠4=90°-70°=20°,

所以α=20°.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】关于二次函数的图象与性质,下列结论错误的是( )

A.x=-2时,函数有最大值-3

B.x<-2时,yx的增大而增大

C.抛物线可由经过平移得到

D.该函数的图象与x轴有两个交点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,求两盏景观灯之间的水平距离(提示:请建立平面直角坐标系后,再作答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ADC中,,,将△ADC沿直线AC对折得△ABC,点EAB边上一动点(与点A,B不重合),连接CE,将射线CE绕点C顺时针旋转120°,交射线AD于点F.

(1)求的长度;

(2)如图2,当EAB中点时,求CF的长度;

(3)用等式表示线段AE,AFAC之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程mx2+15mx50m≠0

1)求证:无论m为任何非0实数,此方程总有两个实数根.

2)若抛物线ymx2+15mx5m≠0)与x轴交于Ax10)、Bx20)两点,且|x1x2|6,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,己知直线交于点、点,与交于点,直线轴交于点,且,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,解答以下问题.

(1)当销售单价定位每千克35元时,销售量为 ,月销售利润为

(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,应涨价多少;

(3)设涨价了x元,月销售利润为y元,请求出y与x的函数关系式,商店想使得月销售利润达到最大,销售单价应为多少.请算出最大利润值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于AB(6,n)两点.

(1)求kn的值;

(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.

查看答案和解析>>

同步练习册答案