精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1个单位长度的小正方形组成的网格中.
(1)把△ABC平移至A′的位置,使点A与A′对应,得到△A′B′C′;
(2)图中可用字母表示,与线段AA′平行且相等的线段有哪些?
(3)求四边形ACC′A′的面积.

【答案】解:(1)△A′B′C′如图所示;
(2)由平移的性质,与线段AA′平行且相等的线段有BB′、CC′;
故答案为:BB′、CC′;
(3)四边形ACC′A′的面积=6×6﹣×1×2﹣×5×4﹣×1×2﹣×5×4
=36﹣1﹣10﹣1﹣10
=36﹣22
=14.

【解析】(1)根据网格结构找出点B、C平移后的对应点B′、C′的位置,然后顺次连接即可;
(2)根据平移的性质,对应点的连线互相平行且相等解答;
(3)利用四边形ACC′A′所在的矩形的面积减去四周四个小直角三角形的面积,列式计算即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是( )

A. ∠1=∠2+∠A B. ∠1=2∠A+∠2

C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.

(1)求OE的长及经过O,D,C三点抛物线的解析式;

(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;

(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四个命题中,错误的命题是( ).

A.四条边都相等的四边形是菱形;

B.对角线互相垂直平分的四边形是正方形;

C.有三个角是直角的四边形是矩形;

D.一组对边平行且相等,对角线垂直且相等的四边形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠ABC+∠ECB=180°,∠P=∠Q,
(1)AB与ED平行吗?为什么?
(2)∠1与∠2是否相等?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知yz的一次函数zx的正比例函数

(1)问:yx的一次函数吗?

(2)若当x5y2;当x=-3y6求当x1y的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积

查看答案和解析>>

同步练习册答案