【题目】小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(kg)与上市时间x(天)的函数关系如图1,樱桃价格z(元/kg)与上市时间x(天)的函数关系式如图2.
(1)求小明家樱桃的日销售量y与上市时间x的函数解析式.
(2)求当5≤x≤20时,樱桃的价格z与上市时间x的函数解析式.
(3)求哪一天的销售金额达到最大,最大值是多少?
【答案】(1)y=﹣15x+300;(2)z=0.4x+6;(3)第11、12天销售额最大,最大为2200元
【解析】
试题(1)分别从0≤x≤12时与12<x≤20去分析,利用待定系数法即可求得小明家樱桃的日销售量y与上市时间x的函数解析式;
(2)当5≤x≤20时分为两段:当5<x≤15时,当15<x≤20时,设樱桃价格与上市时间的函数解析式为z=kx+b,利用待定系数法即可求得樱桃价格与上市时间的函数解析式;
(3)利用销售金额=销售量×销售价格分别算出当x=5、6、7、8、9、10、11、12、13的数值求得答案比较即可.
试题解析:(1)当0≤x≤12时,
设y=kx,代入(12,120)解得k=10,
∴函数解析式为y=10x;
当12<x≤20时,
设y=kx+b,代入(12,120)、(20,0)解得k=﹣15,b=300,
∴函数解析式为y=﹣15x+300;
(2)当5<x≤15时,
设z=kx+b,代入(5,32)、(15,12)解得k=﹣2,b=42,
∴函数解析式为z=﹣2x+42;
当15<x≤20时,
设z=kx+b,代入(20,14)、(15,12)解得k=0.4,b=6,
∴函数解析式为z=0.4x+6;
(3)当x=5、6、7、8、9、10、11、12、13时,
销售量分别为:50、60、70、80、90、100、110、120、105,
对应价格为:32、30、28、26、24、22、20、18、16,
对应销售额为:1600、1800、1960、2080、2160、2200、2200、2160、1680,
所以在第11、12天销售额最大,最大为2200元
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
(1)求∠BAC的度数;
(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
(3)在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=( ).
A. 60° B. 70° C. 80° D. 90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y=ax2+bx+c的图像如图所示,那么关于x的方程ax2+bx+c-4=0的根的情况是( )
A.有两个不相等的实数根 B.有两个异号的实数根
C.有两个相等的实数根 D.没有实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.
(1)求点P的坐标;
(2)求抛物线解析式;
(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )
④ ③ ② ①
A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)
C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC.其中正确的有( )个.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D、E分别在△ACD的边AB和AC上,已知DE∥BC,DE=DB.
(1)请用直尺和圆规在图中画出点D和点E(保留作图痕迹,不要求写作法),并证明所作的线段DE是符合题目要求的;
(2)若AB=7,BC=3,请求出DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,已知直线分别与轴,轴交于,两点,直线:交于点.
(1)求,两点的坐标;
(2)如图1,点E是线段OB的中点,连结AE,点F是射线OG上一点, 当,且时,求的长;
(3)如图2,若,过点作∥,交轴于点,此时在轴上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com