【题目】在生活中,人们经常通过一些标志性建筑确定位置,在数学中往往也是这样.
(1)将正整数如图1的方式进行排列:
小明同学通过仔细观察,发现每一行第一列的数字有一定的规律,所以每一行第一列的数字可以作为标志数,于是他认为第七行第一列的数字是 ,第7行、第5列的数字是 .
(2)方法应用
观察下面一列数:1,﹣2,3,﹣4,5,﹣6,7,…并将这列数按照如图2方式进行排列:
按照上述方式排列下去,
问题1:第10行从左边数第9个数是 ;
问题2:第n行有 个数;(用含n的代数式表示)
问题3:数字2019在第 行,从左边数第 个数.
【答案】(1)49,45;(2)﹣90;2n﹣1;45,83.
【解析】
(1)找出规律第n行第一列的数字为n2,即可得出结果;(2)找出规律每一行最末的数字的绝对值是行数的平分,所有数取绝对值后是连续的正整数,所有数中奇数为正整数、偶数为负整数;问题1:第9行最末的数字的绝对值是81,第10行从左边数第9个数的绝对值是81+9=90,因偶数为负整数,故第10行从左边数第9个数是﹣90;问题2:由每行数的个数为1,3,5,7…;则第n行有2n﹣1个数;问题3:由2019=442+83,即可得出结果.
解:(1)∵每一行第一列的数字为该行的平分,
即第n行第一列的数字为n2,
∴第七行第一列的数字是:72=49,
第5列的数字是:49﹣4=45,
故答案为:49,45;
(2)由题意得:每一行最末的数字的绝对值是行数的平分,所有数取绝对值后是连续的正整数,所有数中奇数为正整数、偶数为负整数,每行数的个数为:1,3,5,7…;
问题1:∵第9行最末的数字的绝对值是81,
∴第10行从左边数第9个数的绝对值是81+9=90,
∵偶数为负整数,
∴第10行从左边数第9个数是﹣90;
问题2:∵每行数的个数为:1,3,5,7…;
∴第n行有2n﹣1个数;
问题3:∵2019=442+83,
∴数字2019在第45行,从左边数第83个数;
故答案为:﹣90;2n﹣1;45,83.
科目:初中数学 来源: 题型:
【题目】(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;
(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;
(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣ x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).
(1)求抛物线的解析式;
(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.
(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】共享单车被誉为“新四大发明”之一,如图1所示是某公司2017年向信阳市场提供一种共享自行车的实物图,车架档AC与CD的长分别为45cm,60cm,AC⊥CD,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离.(结果精确到1cm,参考数据:sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进A、B两种商品共100件,花费3100元,其进价和售价如下表;
(1)A、B两种商品分别购进多少件?
(2)两种商品售完后共获取利润多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为直线AB上一点,∠BOC=36°.
(1)若OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数:
(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,求∠AOE的度数:
(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用n含的代数式表示∠AOE的度数__________(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD是直角梯形,AB=18cm,CD=15cm,AD=6cm,点P从B点开始,沿BA边向点A以1cm/s的速度移动,点Q从D点开始,沿DC边向点C以2cm/s的速度移动,如果P、Q分别从B、D同时出发,P、Q有一点到达终点时运动停止,设移动时间为t.
(1)t为何值时四边形PQCB是平行四边形?
(2)t为何值时四边形PQCB是矩形?
(3)t为何值时四边形PQCB是等腰梯形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P1是一块边长为1的正方形纸板,在P1的右上端剪去一个边长为的正方形后得到图形P2,然后依次剪去一个更小的正方形(其边长为前一个被剪去的正方形边长的一半)得到图形P3、P4、P5…,记纸板Pn的面积为Sn,则Sn﹣Sn+1的值为( )
A.()nB.()nC.()n+1D.()2n﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com