精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.

(1)求证:四边形EFGH是矩形;

(2)已知∠B=60°,AB=6.

请从A,B两题中任选一题作答,我选择   题.

A题:当点EAB的中点时,矩形EFGH的面积是   

B题:当BE=   时,矩形EFGH的面积是8

【答案】(1)证明见解析;(2)AB;A题:9;B题:24.

【解析】

(1)根据题意与菱形的性质证得∠AEH+∠BEF=(180°﹣∠A)+(180°﹣∠B)=90°,同法可证:∠EFG=∠EHG=90°,根据矩形的判定即可得证;

(2)A题:连接AC,BD交于点O.根据题意与菱形的性质可得△ABC是等边三角形,根据等边三角形的性质可得个边长的长度,然后根据矩形的面积公式求解即可;

B题:设BE=x,则AE=6﹣x,EF=x,EH=(6﹣x),根据题意可列出关于x的方程,然后解方程即可.

(1)证明:四边形ABCD是菱形,

∴AD∥BC,AB=BC=CD=AD,

∴∠A+∠B=180°,

∵BE=BF=DH=DG,

∴AE=AH=CF=CG,

∴∠AEH=∠AHE=(180°﹣∠A),∠BEF=∠BFE=(180°﹣∠B),

∴∠AEH+∠BEF=(180°﹣∠A)+(180°﹣∠B)=90°,

同法可证:∠EFG=∠EHG=90°,

四边形EFGH是矩形

(2)解:A题:连接AC,BD交于点O.

∵AE=BE,

∴AH=DH,BF=CF,CG=GD,

∴EF=AC,EH=BD,

∵AB=BC=6,∠ABC=60°,

∴△ABC是等边三角形,

∴AC=AB=6,

∵OB⊥AC,

∴OB=3,BD=2OB=6

∴EF=3,EH=3

∴S矩形EFGH=EFEH=9

故答案为9

B题:设BE=x,则AE=6﹣x,EF=x,EH=(6﹣x),

由题意:x(6﹣x)=8

解得x=42,

∴BE=24.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC,AD为中线,点PAD上一点,点QAC上一点,且∠BPQ+BAQ=180°.

1)若∠ABP=α,求∠PQC的度数(用含α的式子表示);

2)求证:BP=PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(CD的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;

(2)已知,C为抛物线与y轴的交点。

若点P在抛物线上,且,求点P的坐标;

设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD内有一点F,FBFC分别平分∠ABC和∠BCD,点E为矩形ABCD外一点,连接BE,CE.现添加下列条件:①EBCF,CEBF;BE=CE,BE=BF;BECF,CEBE;BE=CE,CEBF,其中能判定四边形BECF是正方形的共有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境:正方形折叠中的数学

已知正方形纸片ABCD中,AB=4,点EAB边上的一点,点GCE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.

(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;

深入探究:

(2)CD边上取点F,使DF=BE,点HAF的中点,再将正方形纸片ABCD沿AF所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.

请你从A,B两题中任选一题作答,我选择   题.

A题:如图2,当点B',D′均落在对角线AC上时,

①判断B′GD′H的数量关系与位置关系,并说明理由;

②直写出此时点H,G之间的距离.

B题:如图3,点MAB的中点,MNBCCD于点N,当点B',D′均落在MN上时,

①判断B′GD′H的数量关系与位置关系,并说明理由;

②直接写出此时点H,G之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD对角线ACBD交于点O过点OEOBDBA延长线于点EAD于点FEF=OFCBD=30°BD=.求AF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;

(2)已知,C为抛物线与y轴的交点。

若点P在抛物线上,且,求点P的坐标;

设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,直角梯形OABC的边OCOA分别在x轴、y轴上,ABOC,∠AOC=90°,∠BCO=45°BC=12,点C的坐标为(-180)

1)求点B的坐标;

2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,∠OFE=45°,求直线DE的解析式;

3)求点D的坐标.

查看答案和解析>>

同步练习册答案