【题目】如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,完成下列问题:
(1)在图中标出圆心D,则圆心D点的坐标为 ;
(2)连接AD、CD,则∠ADC的度数为 ;
(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.
【答案】(1)(2,0) (2)90°(3)r=
【解析】
(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D点坐标;
(2)在△AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,过C作CE⊥x轴于点E,则可证得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度数;
(3)先求得扇形DAC的面积,设圆锥底面半径为r,利用圆锥侧面展开图的面积=πrAD,可求得r.
(1)如图,
分别作AB、BC的垂直平分线,两线交于点D,
∴D点的坐标为(2,0),
故答案为:(2,0);
(2)如图2,连接AD、CD,过点C作CE⊥x轴于点E,
则OA=4,OD=2,在Rt△AOD中,可求得AD=2,
即⊙D的半径为2,
且CE=2,DE=4,
∴AO=DE,OD=CE,
在△AOD和△DEC中,,
∴△AOD≌△DEC(SAS),
∴∠OAD=∠CDE,
∴∠CDE+∠ADO=90°,
∴∠ADC=90°,
故答案为:90°;
(3)弧AC的长=π×2=π,
设圆锥底面半径为r则有2πr=π,
解得:r=,
所以圆锥底面半径为.
故答案为:
科目:初中数学 来源: 题型:
【题目】为了解某校八年级学生参加体育锻炼的情况,随机调查了该校部分学生每周参加体育锻炼的时间,并进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次共调查学生 人;
(2)这组数据的众数是 ;
(3)请你将图2的统计图补充完整;
(4)若该校八年级共有650人,请根据样本数据,估计每周参加体育锻炼时间为6小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点,与轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
(1)求抛物线所对应的函数解析式.
(2)若点P为抛物线对称轴上的一个动点,求PAC周长的最小值.
(3)将AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,AD=6,AB=10,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE.
(1)求弧DE的长;
(2)求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,为直线上一点,为直线外一点,连结.
(1)用直尺、圆规在直线上作点,使为等腰三角形(作出所有符合条件的点,保留痕迹).
(2)设,若(1)中符合条件的点只有两点,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,是的直径,是的切线,切点为.点为射线上一动点(点与不重合),且弦平行于.
求证:是的切线;
设的半径为.试问:当动点在射线上运动到什么位置时,有?请回答并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com