精英家教网 > 初中数学 > 题目详情

【题目】如图8,点D⊙O的直径CA延长线上一点,点B⊙O上,且ABADAO

1)求证:BD⊙O的切线.

2)若点E是劣弧BC上一点,AEBC相交于点F,且△BEF的面积为8cos∠BFA,求△ACF的面积.

【答案】1)见解析;(218

【解析】

1)证明:连接BO

方法一:∵ ABADAO

∴△ODB是直角三角形

∴∠OBD90° 即:BD⊥BO

∴BD⊙O的切线.

方法二:∵ABAD ∴∠D∠ABD

∵ABAO ∴∠ABO∠AOB

△OBD中,∠D+∠DOB+∠ABO+∠ABD180°

∴∠OBD90° 即:BD⊥BO

∴BD⊙O的切线

2)解:∵∠C∠E∠CAF∠EBF

∴△ACF∽△BEF

∵AC⊙O的直径

∴∠ABC90°

Rt△BFA中,cos∠BFA

8

18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=64cmCD=8cmAB=40cmBC=45cm

1

(1)如图2,∠ABC=70°BCOE

①填空:∠BAO= °

②投影探头的端点D到桌面OE的距离

(2)如图3,将(1)中的BC向下旋转,∠ABC=30°时,求投影探头的端点D到桌面OE的距离

(参考数据:sin70≈094cos70≈034sin40°≈064cos40°≈077)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,为格点,为小正方形边的中点.

1的长等于_________

2)点分别为线段上的动点,当取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点和点的位置是如何找到的(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线x轴于A﹣10)和B50)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点CCF⊥lF

1)求抛物线解析式;

2)如图2,当点F恰好在抛物线上时,求线段OD的长;

3)在(2)的条件下:

连接DF,求tan∠FDE的值;

试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.

(1)求抛物线的表达式;

(2)当P位于y轴右边的抛物线上运动时,过点C作CF直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问PBC的面积S能否取得最大值?若能,请出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径是2,点AB在⊙O上,且∠AOB90°,动点C在⊙O上运动(不与AB重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A1A2A3B1B2B3分别在直线yx+bx轴上.OA1B1B1A2B2B2A3B3都是等腰直角三角形如果点A111),那么点A2019的纵坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).

(1)求抛物线的函数解析式;

(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;

(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=ax2+bx+ca0)的顶点为Ast)(其中s0).

1)若抛物线经过(27)和(-337)两点,且s=1

①求抛物线的解析式;

②若n1,设点Mny1),Nn+1y2)在抛物线上,比较y1y2的大小关系,并说明理由;

2)若a=2c=-2,直线y=2x+m与抛物线y=ax2+bx+c的交于点P和点Q,点P的横坐标为h,点Q的横坐标为h+3,求出bh的函数关系式;

3)若点A在抛物线y=上,且2s3时,求a的取值范围.

查看答案和解析>>

同步练习册答案