精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数图象的一部分,对称轴为,且经过点,有下列说法:①;②;③;④若是抛物线上的两点,则,上述说法正确的是( )

A.①②④B.③④C.①③④D.①②

【答案】A

【解析】

①∵二次函数的图象开口向下,

∴a<0,

∵二次函数的图象交y轴的正半轴于一点,

∴c>0,

∵对称轴是直线x=

∴b=a>0,

∴abc<0.

故①正确;

②∵由①中知b=a,

∴a+b=0,

故②正确;

③把x=2代入y=ax +bx+c得:y=4a+2b+c,

∵抛物线经过点(2,0),

∴当x=2时,y=0,即4a+2b+c=0.

故③错误;

④∵(0,y )关于直线x=的对称点的坐标是(1,y ),

∴y=y

故④正确;

综上所述,正确的结论是①②④.

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,大楼AD与塔CB之间的距离AC长为27m,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D处测得塔顶B的仰角为30°,分别求大楼AD的高与塔BC的高结果精确到0.1m,参考数据:≈2.24,≈1.732,≈1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4AD=8,点EAD上一点,将△ABE沿BE折叠得到△FBE,点GCD上一点,将△DEG沿EG折叠得到△HEG,且EFH三点共线,当△CGH为直角三角形时,AE的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象交轴于点,点,交轴于点

1)求二次函数的解析式;

2)连接,在直线上方的抛物线上有一点,过点轴的平行线,交直线于点,设点的横坐标为,线段的长为,求关于的函数关系式;

3)若点轴上,是否存在点,使以为顶点的三角形是等腰三角形,若存在,直接写出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是边长为的正三角形内的一点,到三边的距离分别为.若以为边可以组成三角形,则应满足的条件为()

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABCAE于点M,经过B,M两点的⊙OBC于点G,AB于点F,FB恰为⊙O的直径.

1)求证:AE⊙O相切;

2)当BC=4,cosC=时,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着新冠肺炎的爆发,市场对口罩的需求量急剧增大.某口罩生产商自二月份以来,--直积极恢复产能,每日口罩生产量(百万个)与天数为整数)的函数关系图象如图所示,而该生产商对口供应市场对口罩的需求量<(百万个)与天数呈抛物线型,第天市场口罩缺口(需求量与供应量差)就达到(百万个),之后若干天,市场口罩需求量不断上升,在第天需求量达到最高峰(百万个)

求出的函数解析式;

当市场供应量不小于需求量时,市民买口罩才无需提前预约,那么在整个二月份,市民无需预约即可购买口罩的天数共有多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的弦,过的中点,垂足为,过点的切线的延长线于点

1)求证:

2)连接,若,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店专售一款电动牙刷,其成本为20/支,销售中发现,该商品每天的销售量y(支)与销售单价x(/支)之间存在如图所示的关系.

(1)yx之间的函数关系式.

(2)由于湖北省武汉市爆发了新型冠状病毒肺炎(简称新冠肺炎)疫情,该网店店主决定从每天获得的利润中抽出200元捐献给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定这款电动牙刷的销售单价?

查看答案和解析>>

同步练习册答案