【题目】如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.
(1)求该一次函数的解析式;
(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.
【答案】
(1)
解:∵一次函数y=kx+b(k<0)的图象经过点C(3,0),
∴3k+b=0①,点C到y轴的距离是3,
∵k<0,
∴b>0,
∵一次函数y=kx+b的图象与y轴的交点是(0,b),
∴×3×b=3,
解得:b=2.
把b=2代入①,解得:k=,则函数的解析式是y=x+2.
故这个函数的解析式为y=x+2;
(2)
解:如图,
作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.
∵AD∥BE,
∴△ACD∽△BCE,
∴=2,
∴AD=2BE.
设B点纵坐标为﹣n,则A点纵坐标为2n.
∵直线AB的解析式为y=x+2,
∴A(3﹣3n,2n),B(3+n,﹣n),
∵反比例函数y=的图象经过A、B两点,
∴(3﹣3n)2n=(3+n)(﹣n),
解得n1=2,n2=0(不合题意舍去),
∴m=(3﹣3n)2n=﹣3×4=﹣12.
【解析】(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b的值,然后利用待定系数法即可求得函数解析式;
(2)作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.由△ACD∽△BCE,得出=2,那么AD=2BE.设B点纵坐标为﹣n,则A点纵坐标为2n.由直线AB的解析式为y=﹣x+2,得出A(3﹣3n,2n),B(3+n,﹣n),再根据反比例函数y=的图象经过A、B两点,列出方程(3﹣3n)2n=(3+n)(﹣n),解方程求出n的值,那么m=(3﹣3n)2n,代入计算即可.
科目:初中数学 来源: 题型:
【题目】如图,在中,对角线,交于点,为的中点,点在的延长线上,且.
(1)求证:四边形是平行四边形;
(2)当线段和之间满足什么条件时,四边形是矩形?并说明理由;
(3)当线段和之间满足什么条件时,四边形是正方形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点E为正方形ABCD边BC上的一点,点G为BC延长线一点,连接AE,过点E作AE⊥EF,且AE=EF,连接CF.
(1)如图1,求证:∠FCG=45°,
(2)如图2,过点D作DH//EF交AB于点H,连接HE,求证:;
(3)如图3,连接AF、DF,若AF交CD于点M,DM=2,BH=3,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:
(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?
(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知它们的总辆数为 16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
(3)求出哪种方案的运费最省?最省是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.
(1)求反比例函数和正比例函数的解析式;
(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数(k>0)的图象交于C(x1 , y1),D(x2 , y2),且|x1﹣x2||y1﹣y2|=5,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?
请把下列解题过程补充完整.
理由:
因为AB∥CD,
根据“ ”,
所以∠2=∠3.
因为∠1=∠2,∠3=∠4,
所以∠1=∠2=∠3=∠4,
所以180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,
即: .
根据“ ”,
所以l∥m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校准备实行学案式教学,需印刷若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用(元)与印刷份数(份)之间的关系如图所式.
(1)求出甲、乙两种收费方式的函数关系式;
(2)我校八年级每次需印刷100-450(含100和450)份学案,选择哪种印刷方式较合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,
(1)写出A、B、C的坐标.
(2)以原点O为中心,将△ABC围绕原点O逆时针旋转180°得到△A1B1C1,画出△A1B1C1.
(3)求(2)中C到C1经过的路径以及OB扫过的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com