精英家教网 > 初中数学 > 题目详情
20.已知平行四边形ABCD,AE与BC延长线相交于E、与CD相交于F,
(1)求证:△AFD∽△EAB.
(2)若DF:FC=1:2,求△AFD与△EAB的面积之比.

分析 (1)由四边形ABCD是平行四边形,得到AD∥BE,AB∥CD,根据平行线的性质得到∠DAE=∠AEB,∠DCE=∠B,即可得到结论;
(2)由已知条件得到$\frac{DF}{CD}$=$\frac{1}{3}$,由四边形ABCD是平行四边形,得到CD=AB,求得$\frac{DF}{AB}=\frac{1}{3}$,根据相似三角形的性质即可得到结论.

解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD∥BE,AB∥CD,
∴∠DAE=∠AEB,∠DCE=∠B,
∴△AFD∽△EAB;

(2)解:∵DF:FC=1:2,
∴$\frac{DF}{CD}$=$\frac{1}{3}$,
∵四边形ABCD是平行四边形,
∴CD=AB,
∴$\frac{DF}{AB}=\frac{1}{3}$,
∵△AFD∽△EAB,
∴△AFD与△EAB的面积之比=($\frac{DF}{AB}$)2=1:9.

点评 本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:
2(a2b+ab2)-2(a2b-1)-2ab2-2ab,其中a=1,b=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解不等式组:$\left\{\begin{array}{l}{\frac{x+1}{2}≤1}\\{1-2x<5}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,△AOB的顶点A(-2,0)、B(-1,1).将△AOB绕点O顺时针旋转90°后,点A、B分别落在A′、B′.
(1)在图中画出旋转后的△A′OB′,并写出A′、B′的坐标.
(2)求点A旋转到点A′所经过的弧形路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是3024π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆84g.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.观察下列等式:$1×\frac{1}{2}=1-\frac{1}{2}$,$2×\frac{2}{3}=2-\frac{2}{3}$,$3×\frac{3}{4}=3-\frac{3}{4}$,…
(1)写出第6个等式$6×\frac{6}{7}=6-\frac{6}{7}$,写出第100个等式$100×\frac{100}{101}=100-\frac{100}{101}$;
(2)猜想并写出第n个等式$n×\frac{n}{n+1}=n-\frac{n}{n+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:
(1)四边形AECF是矩形;
(2)MN=$\frac{1}{2}$BC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.一条直线上顺次有A、C、B三点,线段AB的中点为P,线段BC的中点为Q,若AB=10cm,BC=6cm,则线段PQ的长为2cm.

查看答案和解析>>

同步练习册答案