【题目】同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:
(1)数轴上表示5与﹣2两点之间的距离是
(2)数轴上表示x与2的两点之间的距离可以表示为 .
(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是 .
(4)由以上探索猜想|x+10|+|x+2|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
(5)由以上探索猜想|x+10|+|x+2|+|x﹣8|+|x﹣10|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【答案】(1)7;(2)|x﹣2|;(3)﹣2、﹣1、0、1;(4)18;(5)20.
【解析】
(1)根据距离公式即可解答;
(2)根据距离公式即可解答;
(3)利用绝对值和数轴求解即可;
(4)利用绝对值及数轴求解即可;
(5)根据数轴及绝对值,即可解答.
(1)数轴上表示5与﹣2两点之间的距离是:5﹣(﹣2)=7,
故答案为7;
(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,
故答案为:|x﹣2|;
(3)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,
∴这样的整数有﹣2、﹣1、0、1,
故答案为:﹣2、﹣1、0、1;
(4)有最小值,
理由是:∵|x+10|+|x+2|+|x﹣8|理解为:在数轴上表示x到﹣10、﹣2和8的距离之和,
∴当x在﹣10与8之间的线段上(即﹣10≤x≤8)时:
即|x+10|+|x+2|+|x﹣8|的值有最小值,最小值为10+8=18;
(5)有最小值,
理由是|x+10|+|x+2|+|x﹣8|+|x﹣10|理解为:在数轴上表示x到﹣10、﹣2、8和10的距离之和,
∴当x在﹣10与10之间的线段上(即﹣10≤x≤10)时:
即|x+10|+|x+2|+|x﹣8|+|x﹣10|的值有最小值,最小值为10+10=20.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=--x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.
(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:像、、两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式例如,与、与、与等都是互为有理化因式在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.
例如;;.
解答下列问题:
(1)与________互为有理化因式,将分母有理化得________;
(2)计算:;
(3)己知有理数a、b满足,求a、b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件
B.审查书稿中有哪些学科性错误适合用抽样调查法
C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某餐厅中,一张桌子可以坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.
(1)当有5张桌子时,第一种摆放方式能坐 人,第二种摆放方式能坐 人,
(2)当有n张桌子时,第一种摆放方式能坐 人,第二种摆放方式能坐 人,
(3)一天中午餐厅要接待98位顾客共同就餐(即桌子要摆在一起),但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=AD,CB=CD,AB ∥ CD.
(1)求证:四边形ABCD是菱形.
(2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件).
(3)对角线AC和BD交于点O,∠ ADC =120°,AC=8, P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出A P1的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com