精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.

(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;

(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.

①试判断四边形AEMF的形状,并证明你的结论;

②求EF的长;

(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.

【答案】(1)(2)四边形AEMF为菱形,理由详见解析;(3)

【解析】

试题分析:(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF≌S△DEF,则易得S△ABC=4S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到=(2,再利用勾股定理求出AB即可得到AE的长;(2)①通过证明四条边相等判断四边形AEMF为菱形;

②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,先证明△CME∽△CBA得到==,解出x后计算出CM=,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF;

(3)如图③,作FH⊥BC于H,先证明△NCE∽△NFH,利用相似比得到FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再证明△BFH∽△BAC,利用相似比可计算出x=,则可计算出FH和BH,接着利用勾股定理计算出BF,从而得到AF的长,于是可计算出的值.

试题解析:(1)如图①,

∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,

∴EF⊥AB,△AEF≌△DEF,

∴S△AEF≌S△DEF

∵S四边形ECBF=3S△EDF

∴S△ABC=4S△AEF

在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,

∴AB==5,

∵∠EAF=∠BAC,

∴Rt△AEF∽Rt△ABC,

=(2,即(2=

∴AE=

(2)①四边形AEMF为菱形.理由如下:

如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,

∴AE=EM,AF=MF,∠AFE=∠MFE,

∵MF∥AC,

∴∠AEF=∠MFE,

∴∠AEF=∠AFE,

∴AE=AF,

∴AE=EM=MF=AF,

∴四边形AEMF为菱形;

②连结AM交EF于点O,如图②,

设AE=x,则EM=x,CE=4﹣x,

∵四边形AEMF为菱形,

∴EM∥AB,

∴△CME∽△CBA,

==,即==,解得x=,CM=

在Rt△ACM中,AM===

∵S菱形AEMF=EFAM=AECM,

∴EF=2×=

(3)如图③,作FH⊥BC于H,

∵EC∥FH,

∴△NCE∽△NFH,

∴CN:NH=CE:FH,即1:NH=:FH,

∴FH:NH=4:7,

设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,

∵FH∥AC,

∴△BFH∽△BAC,

∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=

∴FH=4x=,BH=4﹣7x=

在Rt△BFH中,BF==2,

∴AF=AB﹣BF=5﹣2=3,

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将一个正整数x的首位数字与末位数字先立方再求和得到一个新数(若x10,则直接将x立方得到新数),定义为Mx)运算.例如:M2)=238M31)=33+1328M102)=13+239,规定对某个正整数x进行第一次Mx)运算记作M1x),第二次Mx)运算记作M2x),……,第nMx)运算记作Mnx),例如:M12)=238M22)=83512M32)=53+23133.

1)求M23)和M20173);

2)若M5n3)=520,求正整数n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点.三角形ABC的三个顶点均在格点上,以点A为圆心的弧EFBC相切于格点D,分别交ABAC于点EF

1)直接写出三角形ABC边长AB   AC   BC   

2)求图中由线段EBBCCF及弧FE所围成的阴影部分的面积.(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.

1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)

在市中心某个居民区以家庭为单位随机抽取;在全市医务工作者中以家庭为单位随机抽取;在全市常住人口中以家庭为单位随机抽取.

2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:

m= n=

补全条形统计图;

扇形统计图中扇形C的圆心角度数是

家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,OAC中点,过点O的直线分别与ABCD交于点EF,连结BFAC于点M,连结DEBO.若∠COB=60°,FO=FC,则下列结论中错误的是(  )

A.FB垂直平分OCB.DE=EF

C.SAOESBCM=32D.EOB≌△CMB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.

(1)求每个篮球和每个排球的销售利润;

(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实国务院房地产调控政策使居者有其屋”,某市加快了廉租房的建设力度,2011年市政府共投资2亿元人民币建设了廉租房8万平方米预计到2013年底三年共累计投资9.5亿元人民币建设廉租房若在这两年内每年投资的增长率相同

(1)求每年市政府投资的增长率;

(2)若这两年内的建设成本不变求到2013年底共建设了多少万平方米廉租房

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为(  )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AEBF相交于点DABAE,垂足为点AEFAE,垂足为点E,点CAD上,连接BC,要计算AB两地的距离,甲、乙、丙、丁四组同学分别测量了部分线段的长度和角的度数,各组分别得到以下数据:

甲:AC、∠ACB

乙:EFDEAD

丙:ADDE和∠DCB

丁:CD、∠ABC、∠ADB

其中能求得AB两地距离的数据有(  )

A.甲、乙两组B.丙、丁两组

C.甲、乙、丙三组D.甲、乙、丁三组

查看答案和解析>>

同步练习册答案