【题目】计算:
(1) 一10+8÷(一2)3一(一40)×(一3);
(2) 一2+|5一8|+24÷(一3);
(3) [30一(十一)×36]÷(一5);
(4) [53—4×(一5)2一(一1)10]÷(一24—24+24).
【答案】 (1)-131; (2)-7;(3)-1;(4)-1.
【解析】试题分析:(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(2)原式先计算除法运算,再计算加减运算即可得到结果;
(3)原式先计算乘除运算,再计算加减运算即可得到结果;
(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.
试题解析:
(1)原式= -10+8÷(-8)-120=-10+(-1)-120=-131;
(2)原式=-2+3-8=-7;
(3)原式=(30-28-30+33)÷(-5)=5÷ (-5)=-1;
(4)原式= (125-4×25—1)÷(-24)=24÷(一24)=-1.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c<0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是( )
A. 5个 B. 4个 C. 3个 D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=,求□ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x+3与 x轴、y轴交于A,B两点,直线经过原点,与线段AB交于点C,使△AOC的面积与△BOC的面积之比为2:1.
(1)求A、B两点的坐标;
(2)求直线的函数解析式;
(3)在坐标平面是否存在点M,使得以A、C、O、M为顶点的四边形是平行四边形,若没有请说明理由,若有请直接写出M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.
(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.
甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件 ;
乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球 ;
(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为,你认同吗?请画树状图或列表计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于x的方程,一定是一元二次方程的是( )
A. x2﹣2xy=0 B. (x+1)(x﹣1)=x2﹣2x
C. ax2+bx+c=0 D. (m2+1)x2﹣2x﹣3=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察右面的图案,每条边上有n(n≥2)个方点,每个图案中方点的总数是S.
(1)请写出n=5时, S= ;
(2)请写出n=18时,S= ;
(3)按上述规律,写出S与n的关系式 S= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列解题过程,然后回答问题:
解方程:
解:①当≥0时,原方程可化为: ,解得;
②当<0时,原方程可化为: ,解得;
所以原方程的解是或
(1)解方程:
(2)探究:当为何值时,方程 ①无解;②只有一个解;③有两个解。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com