精英家教网 > 初中数学 > 题目详情

【题目】1)如图,已知平分平分,求的度数.

2)如果(1)中,,其他条件不变,求的度数.

3)如果(1)中,,其他条件不变,求的度数.

【答案】1)∠MON的度数是45°.(2)∠MON的度数是0.5α.(3)∠MON的度数是45°

【解析】

解:(1)∠MOC=(÷2,∠CON÷2
MON=∠MOCCON60°15°
答:∠MON的度数是45°
2)∠MOC=(α÷20.5α,∠CON30°÷215°
MON=∠MOCCON0.5α15°15°0.5α
答:∠MON的度数是0.5α
3)∠MOC=(β÷20.5β,∠CONβ÷20.5β
MON=∠MOCCON0.5β0.5β
答:∠MON的度数是45°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数 ykx+b 的图象与坐标轴分别交于 AB 两点,与反比例函数 y 的图象在第一象限的交点为点 CCDx 垂足为点 DOB=3,OD=6,AOB 的面积为 3.

(1)求一次函数与反比例函数的解析式;

(2)直接写出当 x>0 时,kx+b>0 的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,MN分别是CDBC的中点,且AMCDANBC

(1)求证:∠BAD=2MAN

(2)连接BD,若∠MAN=70°,DBC=40°,求∠ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。

(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?

(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=-x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-3,0).

(1)求b的值及点B的坐标;

(2)试判断ABC的形状,并说明理由;

(3)一动点P从点A出发,以每秒2个单位的速度向点B运动,同时动点Q从点B出发,以每秒1个单位的速度向点C运动(当点P运动到点B时,点Q随之停止运动),设运动时间为t秒,当t为何值时,PBQABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某租赁公司拥有汽车100.据统计,每辆车的月租金为4000元时,可全部租出.每辆车的月租金每增加100元,未租出的车将增加1.租出的车每辆每月的维护费为500元,未租出的车每辆每月只需维护费100.

1)当每辆车的月租金为4600元时,能租出多少辆?并计算此时租赁公司的月收益(租金收入扣除维护费)是多少万元?

2)规定每辆车月租金不能超过7200元,当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达40.4万元?

3)当每辆车的月租金定为_________元时,租赁公司的月收益最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数的图象经过点,直线x轴交于点

1)求的值;

2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D

①当时,判断线段PDPC的数量关系,并说明理由;

②若,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某条道路上通行车辆限速为60千米/在离道路50米处建有一个监测点P道路AB段为检测区(如图).在ABP已知∠PAB=32°,PBA=45°,那么车辆通过AB段的时间在多少秒以内时可认定为超速?(精确到0.1秒.参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线AB与直线PQ交于点E,直线CD与直线PQ交于点F,∠PEB+QFD180°.

1)如图1,求证:ABCD

2)如图2,点G为直线PQ上一点,过点G作射线GHAB,在∠EFD内过点F作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FMGN

3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RGRSRE,射线RT平分∠ERS,∠SGR=∠SRGTKRG,若∠KTR+ERF108°,∠ERT2TRF,∠BER40°,求∠NGH的度数.

查看答案和解析>>

同步练习册答案