精英家教网 > 初中数学 > 题目详情

【题目】如图,反比例函数的图象与一次函数的图象交于两点,则下列一次函数中,能使线段最长的是( )

A. B. C. D.

【答案】D

【解析】

分别求出反比例函数与一次函数所形成的交点A、B的坐标,再利用两点之间的距离公式求出AB的长,进行比较即可.

解方程组

y=,y=x+4,得

x=2+2,y=2+2x=22,y=22

可知A点坐标是(-2+2,2+2),B点坐标是(-2-2,2-2),

AB===8;

同理可求函数y=y=x的交点之间的距离==4

同理可求函数y=y=x-3的交点之间的距离==5

同理可求函数y=y=x-5的交点之间的距离=

∴函数y=y=x-5相交形成的两点A、B之间的距离最长.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图1所示,在RtABC中,∠ACB=90°,AC=BC,点D在斜边AB上,点E在直角边BC上,若∠CDE=45°,求证:△ACD∽△BDE.

(2)如图2所示,在矩形ABCD中,AB=4cm,BC=10cm,点EBC上,连接AE,过点EEFAECD(或CD的延长线)于点F.

①若BE:EC=1:9,求CF的长;

②若点F恰好与点D重合,请在备用图上画出图形,并求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,PAB边上一点,将△BCP沿CP折叠,得到△FCP.

(1)如图1,延长PFADE,求证:EF=ED;

(2)如图2,DF,CP的延长线交于点G,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,tanACB=2,D在△ABC内部,且AD=CD,ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC=AD,CAD=60°,分别连接BC、BD,作AE平分∠BACBD于点E,若BE=4,ED=8,则DF=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DEBC边上,点FAC边上,将△ABD沿着AD翻折,使点B和点E重合,将△CEF沿着EF翻折,点C恰与点A重合.结论:①∠BAC=90°,②DE=EF,③∠B=2C,④AB=EC,正确的有(  )

A.①②③④B.③④C.①②④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:

(1)甲车间每天加工大米   吨,a=   

(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.

(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:

1)已知ABAC6,∠BAC120°,点PBC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是   

2)为进一步运用该结论,小明发现当AP最短时,在RtABP中,∠P90°,作了AD平分∠BAP,交BP于点D,点EF分别是ADAP边上的动点,连接PEEF,小明尝试探索PE+EF的最小值,为转化EF,小明在AB上截取AN,使得ANAF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP3AB6AP3,则PE+EF的最小值为   

3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C90°,∠B30°,AC10,点DCD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC,BAC=90°,AB=6,AC=8,P是斜边BC上一动点,PEAB于点E,PFAC于点F,EFAP相交于点O,OF的最小值为 ( )

A. 4.8 B. 1.2

C. 3.6 D. 2.4

查看答案和解析>>

同步练习册答案