精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,与CD相交于点F,DHBCH,交BEG.下列结论:①BD=CD;AD+CF=BD;CE=BF;AE=BG.其中正确的是

A. ①② B. ①③ C. ①②③ D. ①②③④

【答案】C

【解析】

根据∠ABC=45°,CDAB可得出BD=CD,利用AAS判定RtDFBRtDAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定RtBEARtBEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF,连接CG.因为BCD是等腰直角三角形,即BD=CD.又因为DHBC,那么DH垂直平分BC.即BG=CG.在RtCEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.

CDAB,ABC=45°,

BCD是等腰直角三角形.

BD=CD.故①正确;

RtDFBRtDAC中,

∵∠DBF=90°BFD,DCA=90°EFC,且∠BFD=EFC,

∴∠DBF=DCA.

又∵∠BDF=CDA=90°,BD=CD,

DFBDAC.

BF=AC;DF=AD.

CD=CF+DF,

AD+CF=BD;故②正确;

RtBEARtBEC.

BE平分∠ABC,

∴∠ABE=CBE.

又∵BE=BE,BEA=BEC=90°,

RtBEARtBEC.

CE=AE=AC.

又由(1),知BF=AC,

CE=AC=BF;故③正确;

连接CG.

BCD是等腰直角三角形,

BD=CD.

DHBC,

DH垂直平分BC.BG=CG.

RtCEG中,

CG是斜边,CE是直角边,

CE<CG.

CE=AE,

AE<BG.故④错误.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.

(1)当a=10米时,花圃的面积=
(2)通道的面积与花圃的面积之比能否恰好等于3:5,如果可以,求出此时通道的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示 AB 两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地.如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.

1)甲乙两人中, 先出发,先出发 小时.

2)甲乙两人中, 先到达B地,先到 小时.

3)分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.

4)乙出发大约用多长时间就追上甲?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= . (结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=90°,D,E分别在边BC,AC上,∠ADE=45°.
求证:△ABD∽△DCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D 的边AC上,要判断 相似,添加一个条件,不正确的是( )

A.
B.  
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,ECD边上的一点,FBC延长线上一点,且CECF

1)求证:△BEC≌△DFC

2)若正方形ABCD的面积16CF3,求BE的长.

查看答案和解析>>

同步练习册答案