精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,∠BAC=90°,D,E分别在边BC,AC上,∠ADE=45°.
求证:△ABD∽△DCE.

【答案】证明:∵AB=AC,∠BAC=90°,

∴∠B=∠C=45°.

∵∠ADC=∠ADE+∠EDC=45°+∠EDC,∠ADC=∠B+∠BAD=45°+∠BAD,

∴∠BAD=∠EDC,

∵∠B=∠C,∠BAD=∠EDC,

∴△ABD∽△DCE


【解析】根据等腰直角三角形的性质及三角形内角与外角的关系,易证△ABD∽△DCE.
【考点精析】本题主要考查了等腰直角三角形和相似三角形的判定的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°.

(1)用圆规和直尺在AC上作点P,使点PA、B的距离相等.(保留作图痕迹,不写作法和证明)

(2)当满足(1)的点PAB、BC的距离相等时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)

(1)求yx之间的函数表达式;

(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的四分之一,按此建议,求该辆汽车最多行驶的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个由若干小正方形堆成的几何体,它从正面看和从左面看的图形如图1所示.

这个几何体可以是图2中甲,乙,丙中的______

这个几何体最多由______个小正方体堆成,最少由______个小正方体堆成;

请在图3中用阴影部分画出符合最少情况时的一个从上面往下看得到的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,与CD相交于点F,DHBCH,交BEG.下列结论:①BD=CD;AD+CF=BD;CE=BF;AE=BG.其中正确的是

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法错误的是( )
A.同时抛两枚普通正方体骰子,点数都是4的概率为
B.不可能事件发生机会为0
C.买一张彩票会中奖是可能事件
D.一件事发生机会为1.0%,这件事就有可能发生

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD(纸片)折叠,使点BAD边上的点K重合,EG为折痕;点CAD边上的点K重合,FH为折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为美丽三角形

(1)如图△ABC中,AB=AC=BC=2,求证:△ABC美丽三角形

(2)RtABC中,∠C=90°AC=2,若△ABC美丽三角形,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件中,是随机事件的是( )
A.任意选择某一电视频道,它正在播放新闻联播
B.三角形任意两边之和大于第三边
C. 是实数,
D.在一个装着白球和黑球的袋中摸球,摸出红球

查看答案和解析>>

同步练习册答案