精英家教网 > 初中数学 > 题目详情

【题目】某风景区内的公路如图1所示,景区内有免费的班车,从运河码头出发,沿该公路开往薰衣草庄园,途中停靠生态文化园(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从运河码头发车.小聪周末到该风景区游玩,上午7:40到达运河码头,因还没到班车发车时间,于是从景区运河码头出发,沿该公路步行25分钟后到达生态文化园.离运河码头的路程(米)与时间(分)的函数关系如图2所示.

1)求第一班车离运河码头的路程(米)与时间(分)的函数表达式.

2)求第一班车从运河码头到达生态文化园所需的时间.

3)小聪在生态文化园游玩40分钟后,想坐班车到薰衣草庄园,则小聪最早能够坐上第几班车?如果他坐这班车到薰衣草庄园,比他在生态文化园游玩结束后立即步行到薰衣草庄园提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)

【答案】1;(2)第一班车从运河码头到达生态文化园所需时间10分钟;(3)比他在生态文化园游玩结束后立即步行到薰衣草庄园提早了7分钟.

【解析】

1)设y=kx+b,运用待定系数法求解即可;
2)把y=1500代入(1)的解析式求出x即可;
3)设小聪坐上了第n班车,30-25+10n-1)≥40,解得n4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.

解:(1)由题意得,可设函数表达式为:

代入,得,解得

∴第一班车离运河码头的路程(米)与时间(分)的函数表达为

2)把代入,解得

(分),

∴第一班车从运河码头到达生态文化园所需时间10分钟;

3)设小聪坐上了第班车,则

,解得

∴小聪坐上了第5班车.

等车的时间为5分钟,坐班车所需时间为:(分),

步行所需时间:(分),

(分).

∴比他在生态文化园游玩结束后立即步行到薰衣草庄园提早了7分钟.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,斜边的中垂线于点,交的外角平分线于点于点垂直的延长线与点,连接于点,现有不列结论:①,②,③,④,⑤,其中正确的个数是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点, 则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?

问题探究:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律

探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有1+2+1=2×1+2+3=12条线段.

探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有1+2+3+1+2+1=3×1+2+3+4=30条线段.

探究三:

请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?

(画出示意图,并写出探究过程)

问题解决:

请你仿照上面的方法,探究将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)

实际应用:

将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进06米,经过5天施工,两组共掘进了45米.

1)求甲、乙两个班组平均每天各掘进多少米?

2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进02米,乙组平均每天能比原来多掘进03米.按此旄工进度,能够比原来少用多少天完成任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C:y=x2+(2m﹣1)x﹣2m.

(1)若m=1,抛物线Cx轴于A,B两点,求AB的长;

(2)若一次函数y=kx+mk的图象与抛物线C有唯一公共点,求m的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市出租车计费方法如图所示,xkm)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:

1)出租车的起步价是多少元?当x3时,求y关于x的函数关系式.

2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=3OB=2OAC为直线y=2x与直线AB的交点,点D在线段OC上,OD=

1)求点C的坐标;

2)若P为线段AD上一动点(不与AD重合).P的横坐标为xPOD的面积为S,请求出Sx的函数关系式;

3)若F为直线AB上一动点,Ex轴上一点,是否存在以ODEF为顶点的四边形是平行四边形?若存在,写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是(  )

A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;②

(2)请计算甲六次测试成绩的方差;

(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.

查看答案和解析>>

同步练习册答案